Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Formal Quantifier Elimination for Algebraically Closed Fields

  • Conference paper
Intelligent Computer Mathematics (CICM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6167))

Included in the following conference series:

Abstract

We prove formally that the first order theory of algebraically closed fields enjoys quantifier elimination, and hence is decidable. This proof is organized in two modular parts. We first reify the first order theory of rings and prove that quantifier elimination leads to decidability. Then we implement an algorithm which constructs a quantifier free formula from any first order formula in the theory of ring. If the underlying ring is in fact an algebraically closed field, we prove that the two formulas have the same semantic. The algorithm producing the quantifier free formula is programmed in continuation passing style, which leads to both a concise program and an elegant proof of semantic correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barras, B.: Sets in coq, coq in sets. In: Proceedings of the 1st Coq Workshop. Technical University of Munich Research Report (2009)

    Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics. Springer, New York (2006)

    MATH  Google Scholar 

  3. Berardi, S., Valentini, S.: Krivine’s intuitionistic proof of classical completeness for countable languages. Ann. Pure Appl. Logic 129(1-3), 93–106 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Coq’Art: the Calculus of Inductive Constructions. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  5. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Buchberger, B.: Groebner Bases: Applications. In: Mikhalev, A.V., Pilz, G.F. (eds.) The Concise Handbook of Algebra, pp. 265–268. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  7. Chevalley, C., Cartan, H.: Schémas normaux; morphismes; ensembles constructibles. In: Séminaire Henri Cartan, Numdam, vol. 8, pp. 1–10 (1955-1956), http://www.numdam.org/item?id=SHC_1955-1956__8__A7_0

  8. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

    Google Scholar 

  9. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. Journal of Symbolic Computation 34(4), 271–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001: Supplemental Proceedings, Division of Informatics, University of Edinburgh, pp. 159–174 (2001); Published as Informatics Report Series EDI-INF-RR-0046, http://www.informatics.ed.ac.uk/publications/report/0046.html

  11. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Gödel, K.: Über die Vollständigkeit des Logikkalküls. PhD thesis, University of Vienna, Austria (1929)

    Google Scholar 

  13. Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 18–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. O’Connor, R.: Incompleteness & Completeness, Formalizing Logic and Analysis in Type Theory. PhD thesis, Radboud University Nijmegen, Netherlands (2009)

    Google Scholar 

  15. Pottier, L.: Connecting gröbner bases programs with coq to do proofs in algebra, geometry and arithmetics. In: LPAR Workshops. CEUR Workshop Proceedings, vol. 418. CEUR-WS.org (2008)

    Google Scholar 

  16. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 294–309. Springer, Heidelberg (2005)

    Google Scholar 

  17. Robinson, J.: Definability and decision problems in arithmetic. Journal of Symbolic Logic 14, 98–114 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simpson, C.T.: Formalized proof, computation, and the construction problem in algebraic geometry (2004)

    Google Scholar 

  19. Tarski, A.: A decision method for elementary algebra and geometry. In: RAND Corp., Santa Monica, CA (1948) (manuscript); Republished as A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cohen, C., Mahboubi, A. (2010). A Formal Quantifier Elimination for Algebraically Closed Fields. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14128-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14127-0

  • Online ISBN: 978-3-642-14128-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics