Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing in Coq with Infinite Algebraic Data Structures

  • Conference paper
Intelligent Computer Mathematics (CICM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6167))

Included in the following conference series:

Abstract

Computational content encoded into constructive type theory proofs can be used to make computing experiments over concrete data structures. In this paper, we explore this possibility when working in Coq with chain complexes of infinite type (that is to say, generated by infinite sets) as a part of the formalization of a hierarchy of homological algebra structures.

Partially supported by Ministerio de Ciencia e Innovación, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrés, M., Lambán, L., Rubio, J.: Executing in Common Lisp, Proving in ACL2. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Aransay, J., Ballarin, C., Rubio, J.: A Mechanized Proof of the Basic Perturbation Lemma. J. Autom. Reason. 40(4), 271–292 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aransay, J., Ballarin, C., Rubio, J.: Generating certified code from formal proofs: a case study in homological algebra. Form. Asp. Comput. 22, 193–213 (2010)

    Article  MATH  Google Scholar 

  4. Aransay, J., Domínguez, C.: Modelling Differential Structures in Proof Assistants: The Graded Case. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 203–210. Springer, Heidelberg (2009)

    Google Scholar 

  5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. In: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

    Google Scholar 

  6. Boutin, S.: Using reflection to build efficient and certified decision procedures. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of the fifth ACM SIGPLAN International Conference on Functional Programming, SIGPLAN Notices, vol. 35(9), pp. 268–279 (2000)

    Google Scholar 

  8. Coquand, T., Spiwack, A.: Constructively finite. In: Contribuciones científicas en honor de Mirian Andrés Gómez. Servicio de Publicaciones de la Universidad de La Rioja (2010)

    Google Scholar 

  9. Coquand, T., Spiwack, A.: Towards Constructive Homological Algebra in Type Theory. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 40–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Domínguez, C., Lambán, L., Rubio, J.: Object-Oriented Institutions to Specify Symbolic Computation Systems. Rairo. Theor. Inf. Appl. 41, 191–214 (2007)

    Article  MATH  Google Scholar 

  11. Domínguez, C., Rubio, J.: Effective Homology of Bicomplexes, formalized in Coq, https://esus.unirioja.es/psycotrip/archivos_documentos/EHBFC.pdf

  12. Dousson, X., Sergeraert, F., Siret, Y.: The Kenzo Program. Institut Fourier, Grenoble (1999), http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

    Google Scholar 

  13. Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. J. Symb. Comput. 34(4), 271–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gonthier, G.: Formal Proof: The Four-Color Theorem. Notices of the AMS 55(11), 1382–1393 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Jacobson, N.: Basic Algebra II, 2nd edn. W.H. Freeman and Company, New York (1989)

    MATH  Google Scholar 

  17. Lambán, L., Pascual, V., Rubio, J.: An Object-Oriented Interpretation of the EAT System. Appl. Algebra Eng. Commun. Comput. 14(3), 187–215 (2003)

    Article  MATH  Google Scholar 

  18. Letouzey, L.: Extraction in Coq: An Overview. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. LogiCal project. The Coq Proof Assistant (2010), http://coq.inria.fr/

  20. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Math. Struct. Comput. Sci. 17(1), 99–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. May, P.: Simplicial Objects in Algebraic Topology. Van Nostrand (1967)

    Google Scholar 

  22. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL: A proof assistant for higher order logic, LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  23. Rubio, J., Sergeraert, F.: Computing with locally effective matrices. Int. J. Comput. Math. 82(10), 1177–1189 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bull. Sci. math. 126, 389–412 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sergeraert, F.: The computability problem in Algebraic Topology. Adv. Math. 104, 1–29 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Domínguez, C., Rubio, J. (2010). Computing in Coq with Infinite Algebraic Data Structures. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14128-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14127-0

  • Online ISBN: 978-3-642-14128-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics