Abstract
Computational content encoded into constructive type theory proofs can be used to make computing experiments over concrete data structures. In this paper, we explore this possibility when working in Coq with chain complexes of infinite type (that is to say, generated by infinite sets) as a part of the formalization of a hierarchy of homological algebra structures.
Partially supported by Ministerio de Ciencia e Innovación, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrés, M., Lambán, L., Rubio, J.: Executing in Common Lisp, Proving in ACL2. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 1–12. Springer, Heidelberg (2007)
Aransay, J., Ballarin, C., Rubio, J.: A Mechanized Proof of the Basic Perturbation Lemma. J. Autom. Reason. 40(4), 271–292 (2008)
Aransay, J., Ballarin, C., Rubio, J.: Generating certified code from formal proofs: a case study in homological algebra. Form. Asp. Comput. 22, 193–213 (2010)
Aransay, J., Domínguez, C.: Modelling Differential Structures in Proof Assistants: The Graded Case. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 203–210. Springer, Heidelberg (2009)
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. In: Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)
Boutin, S.: Using reflection to build efficient and certified decision procedures. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer, Heidelberg (1997)
Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of the fifth ACM SIGPLAN International Conference on Functional Programming, SIGPLAN Notices, vol. 35(9), pp. 268–279 (2000)
Coquand, T., Spiwack, A.: Constructively finite. In: Contribuciones científicas en honor de Mirian Andrés Gómez. Servicio de Publicaciones de la Universidad de La Rioja (2010)
Coquand, T., Spiwack, A.: Towards Constructive Homological Algebra in Type Theory. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 40–54. Springer, Heidelberg (2007)
Domínguez, C., Lambán, L., Rubio, J.: Object-Oriented Institutions to Specify Symbolic Computation Systems. Rairo. Theor. Inf. Appl. 41, 191–214 (2007)
Domínguez, C., Rubio, J.: Effective Homology of Bicomplexes, formalized in Coq, https://esus.unirioja.es/psycotrip/archivos_documentos/EHBFC.pdf
Dousson, X., Sergeraert, F., Siret, Y.: The Kenzo Program. Institut Fourier, Grenoble (1999), http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. J. Symb. Comput. 34(4), 271–286 (2002)
Gonthier, G.: Formal Proof: The Four-Color Theorem. Notices of the AMS 55(11), 1382–1393 (2008)
Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)
Jacobson, N.: Basic Algebra II, 2nd edn. W.H. Freeman and Company, New York (1989)
Lambán, L., Pascual, V., Rubio, J.: An Object-Oriented Interpretation of the EAT System. Appl. Algebra Eng. Commun. Comput. 14(3), 187–215 (2003)
Letouzey, L.: Extraction in Coq: An Overview. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg (2008)
LogiCal project. The Coq Proof Assistant (2010), http://coq.inria.fr/
Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the Coq system. Math. Struct. Comput. Sci. 17(1), 99–127 (2007)
May, P.: Simplicial Objects in Algebraic Topology. Van Nostrand (1967)
Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL: A proof assistant for higher order logic, LNCS, vol. 2283. Springer, Heidelberg (2002)
Rubio, J., Sergeraert, F.: Computing with locally effective matrices. Int. J. Comput. Math. 82(10), 1177–1189 (2005)
Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bull. Sci. math. 126, 389–412 (2002)
Sergeraert, F.: The computability problem in Algebraic Topology. Adv. Math. 104, 1–29 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Domínguez, C., Rubio, J. (2010). Computing in Coq with Infinite Algebraic Data Structures. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-14128-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14127-0
Online ISBN: 978-3-642-14128-7
eBook Packages: Computer ScienceComputer Science (R0)