Abstract
A lot of mathematical knowledge has been formalized and stored in repositories by now: Different mathematical theorems and theories have been taken into consideration and included in mathematical repositories. Applications more distant from pure mathematics, however — though based on these theories — often need more detailed knowledge about the underlying theories. In this paper we present an example Mizar formalization from the area of electrical engineering focusing on stability theory which is based on complex analysis. We discuss what kind of special knowledge is necessary and which amount of this knowledge is included in existing repositories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Byliński, C.: The Complex Numbers. Formalized Mathematics 1(3), 507–513 (1990)
Bancerek, G.: On the Structure of Mizar Types. In: Geuvers, H., Kamareddine, F. (eds.) Proc. of MLC 2003. ENTCS, vol. 85(7) (2003)
Davies, M.: Obvious Logical Inferences. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 530–531 (1981)
de Bruijn, N.G.: The Mathematical Vernacular, a language for mathematics with typed sets. In: Dybjer, P., et al. (eds.) Proc. of the Workshop on Programming Languages, Marstrand, Sweden (1987)
Jaśkowski, S.: On the Rules of Suppositon in Formal Logic. In: Studia Logica, vol. 1 (1934)
Korniłowicz, A.: How to Define Terms in Mizar Effectively. Studies in Logic, Grammar and Rhetoric 18(31), 67–77 (2009)
Milewska, A.J.: The Field of Complex Numbers. Formalized Mathematics 9(2), 265–269 (2001)
Milewski, R.: The Ring of Polynomials. Formalized Mathematics 9(2), 339–346 (2001)
The Mizar Home Page, http://mizar.org
Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)
Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 2nd edn. Prenctice-Hall, New Jersey (1998)
Rowinska-Schwarzweller, A., Schwarzweller, C.: Towards Mathematical Knowledge Management for Electrical Engineering. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 371–380. Springer, Heidelberg (2007)
Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in Mizar. In: Buchberger, B., Caprotti, O. (eds.) Proc. of MKM 2001, Linz, Austria (2001)
Schwarzweller, C.: Rational Functions. Journal of Formalized Mathematics (to appear)
Schwarzweller, C., Rowinska-Schwarzweller, A.: A Theorem for Checking Stability of Networks. Journal of Formalized Mathematics (to appear)
Tarski, A.: On Well-Ordered Subsets of Any Set. Fundamenta Mathematicae 32, 176–183 (1939)
Unbehauen, R.: Netzwerk-und Filtersynthese: Grundlagen und Anwendungen (4. Auflage). Oldenbourg-Verlag, München (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rowinska-Schwarzweller, A., Schwarzweller, C. (2010). On Building a Knowledge Base for Stability Theory. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-14128-7_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14127-0
Online ISBN: 978-3-642-14128-7
eBook Packages: Computer ScienceComputer Science (R0)