Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Building a Knowledge Base for Stability Theory

  • Conference paper
Intelligent Computer Mathematics (CICM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6167))

Included in the following conference series:

  • 759 Accesses

Abstract

A lot of mathematical knowledge has been formalized and stored in repositories by now: Different mathematical theorems and theories have been taken into consideration and included in mathematical repositories. Applications more distant from pure mathematics, however — though based on these theories — often need more detailed knowledge about the underlying theories. In this paper we present an example Mizar formalization from the area of electrical engineering focusing on stability theory which is based on complex analysis. We discuss what kind of special knowledge is necessary and which amount of this knowledge is included in existing repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Byliński, C.: The Complex Numbers. Formalized Mathematics 1(3), 507–513 (1990)

    Google Scholar 

  2. Bancerek, G.: On the Structure of Mizar Types. In: Geuvers, H., Kamareddine, F. (eds.) Proc. of MLC 2003. ENTCS, vol. 85(7) (2003)

    Google Scholar 

  3. Davies, M.: Obvious Logical Inferences. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, pp. 530–531 (1981)

    Google Scholar 

  4. de Bruijn, N.G.: The Mathematical Vernacular, a language for mathematics with typed sets. In: Dybjer, P., et al. (eds.) Proc. of the Workshop on Programming Languages, Marstrand, Sweden (1987)

    Google Scholar 

  5. Jaśkowski, S.: On the Rules of Suppositon in Formal Logic. In: Studia Logica, vol. 1 (1934)

    Google Scholar 

  6. Korniłowicz, A.: How to Define Terms in Mizar Effectively. Studies in Logic, Grammar and Rhetoric 18(31), 67–77 (2009)

    Google Scholar 

  7. Milewska, A.J.: The Field of Complex Numbers. Formalized Mathematics 9(2), 265–269 (2001)

    Google Scholar 

  8. Milewski, R.: The Ring of Polynomials. Formalized Mathematics 9(2), 339–346 (2001)

    Google Scholar 

  9. The Mizar Home Page, http://mizar.org

  10. Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing, 2nd edn. Prenctice-Hall, New Jersey (1998)

    Google Scholar 

  12. Rowinska-Schwarzweller, A., Schwarzweller, C.: Towards Mathematical Knowledge Management for Electrical Engineering. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 371–380. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Rudnicki, P., Trybulec, A.: Mathematical Knowledge Management in Mizar. In: Buchberger, B., Caprotti, O. (eds.) Proc. of MKM 2001, Linz, Austria (2001)

    Google Scholar 

  14. Schwarzweller, C.: Rational Functions. Journal of Formalized Mathematics (to appear)

    Google Scholar 

  15. Schwarzweller, C., Rowinska-Schwarzweller, A.: A Theorem for Checking Stability of Networks. Journal of Formalized Mathematics (to appear)

    Google Scholar 

  16. Tarski, A.: On Well-Ordered Subsets of Any Set. Fundamenta Mathematicae 32, 176–183 (1939)

    Google Scholar 

  17. Unbehauen, R.: Netzwerk-und Filtersynthese: Grundlagen und Anwendungen (4. Auflage). Oldenbourg-Verlag, München (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rowinska-Schwarzweller, A., Schwarzweller, C. (2010). On Building a Knowledge Base for Stability Theory. In: Autexier, S., et al. Intelligent Computer Mathematics. CICM 2010. Lecture Notes in Computer Science(), vol 6167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14128-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14128-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14127-0

  • Online ISBN: 978-3-642-14128-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics