Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Noetherian Spaces in Verification

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

Noetherian spaces are a topological concept that generalizes well quasi-orderings. We explore applications to infinite-state verification problems, and show how this stimulated the search for infinite procedures à la Karp-Miller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Čerāns, K., Jonsson, B., Yih-Kuen, T.: Algorithmic analysis of programs with well quasi-ordered domains. Information and Computation 160(1/2), 109–127 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward reachability analysis for verification of lossy channel systems. Formal Methods in System Design 25(1), 39–65 (2004)

    Article  MATH  Google Scholar 

  3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: Proc. 8th IEEE Int. Symp. Logic in Computer Science (LICS 1993), pp. 160–170 (1993)

    Google Scholar 

  4. Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state systems. Theoretical Computer Science 256(1-2), 145–167 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Abdulla, P.A., Nylén, A.: Timed Petri nets and bqos. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford University Press, Oxford (1994)

    Google Scholar 

  7. Acciai, L., Boreale, M.: Deciding safety properties in infinite-state pi-calculus via behavioural types. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 31–42. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Adams, W.W., Loustaunau, P.: An introduction to Gröbner bases. Graduate Studies in Mathematics, vol. 3, 289 pages. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  9. Buchberger, B., Loos, R.: Algebraic simplification. In: Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds.) Computer Algebra, Symbolic and Algebraic Computation. Springer, Heidelberg (1982-1983)

    Google Scholar 

  10. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to verify than perfect channels. Information and Computation 124(1), 20–31 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Groote, P., Guillaume, B., Salvati, S.: Vector addition tree automata. In: Proc. 19th IEEE Int. Symp. Logics in Computer Science, pp. 64–73 (2004)

    Google Scholar 

  12. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part I: Completions. In: Albers, S., Marion, J.-Y. (eds.) Proc. STACS 2009, Freiburg, Germany, pp. 433–444 (2009)

    Google Scholar 

  14. Finkel, A., Goubault-Larrecq, J.: Forward analysis for WSTS, part II: Complete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing Petri net extensions. Information and Computation 195(1-2), 1–29 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, enlarge and check: New algorithms for the coverability problem of WSTS. J. Comp. Sys. Sciences 72(1), 180–203 (2006)

    Article  MATH  Google Scholar 

  18. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous lattices and domains. In: Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, Cambridge (2003)

    Google Scholar 

  19. Goubault-Larrecq, J.: On Noetherian spaces. In: Proc. 22nd IEEE Int. Symp. Logic in Computer Science (LICS 2007), Wrocław, Poland, pp. 453–462 (2007)

    Google Scholar 

  20. Grothendieck, A.: Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): I. Le langage des schémas, vol. 4, pp. 5–228. Publications mathématiques de l’I.H.É.S (1960)

    Google Scholar 

  21. Henzinger, T.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transition systems. ACM Trans. Computational Logic 6(1), 1–32 (2005)

    Article  MathSciNet  Google Scholar 

  22. Higman, G.: Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society 2(7), 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theoretical Computer Science 8, 135–159 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)

    MATH  MathSciNet  Google Scholar 

  25. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society 95(2), 210–225 (1960)

    MATH  MathSciNet  Google Scholar 

  26. Lazič, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with tokens which carry data. Fundamenta Informaticae 88(3), 251–274 (2008)

    MATH  MathSciNet  Google Scholar 

  27. Lombardi, H., Perdry, H.: The Buchberger algorithm as a tool for ideal theory of polynomial rings in constructive mathematics. In: Gröbner Bases and Applications (Proc. of the Conference 33 Years of Gröbner Bases). London Mathematical Society Lecture Notes, vol. 251, pp. 393–407. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  28. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Annals of Mathematics, Second Series 74(3), 437–455 (1961)

    MathSciNet  Google Scholar 

  29. Müller-Olm, M., Seidl, H.: Polynomial constants are decidable. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Murthy, C.R., Russell, J.R.: A constructive proof of Higman’s lemma. In: Proc. 5th IEEE Symposium on Logic in Computer Science (LICS 1990), pp. 257–267 (1990)

    Google Scholar 

  31. Nash-Williams, C.S.-J.A.: On better-quasi-ordering transfinite sequences. In: Proc. Cambridge Philosophical Society, vol. 64, pp. 273–290 (1968)

    Google Scholar 

  32. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)

    Google Scholar 

  33. Rabinowitch, S.: Zum Hilbertschen Nullstellensatz. Mathematische Annalen 102, 520 (1929)

    Article  Google Scholar 

  34. Reutenauer, C.: Aspects Mathématiques des Réseaux de Petri. Masson (1993)

    Google Scholar 

  35. Smyth, M.: Effectively given domains. Theoretical Computer Science 5, 257–274 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  36. Taylor, P.: Computably based locally compact spaces. Logical Methods in Computer Science 2(1) (2006)

    Google Scholar 

  37. Verma, K.N., Goubault-Larrecq, J.: Karp-Miller trees for a branching extension of VASS. Discrete Mathematics & Theoretical Computer Science 7(1), 217–230 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goubault-Larrecq, J. (2010). Noetherian Spaces in Verification. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics