Abstract
It has been observed empirically that clause learning does not significantly improve the performance of a SAT solver when restricted to learning clauses of small width only. This experience is supported by lower bound theorems. It is shown that lower bounds on the runtime of width-restricted clause learning follow from resolution width lower bounds. This yields the first lower bounds on width-restricted clause learning for formulas in 3-CNF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular and general resolution. Theory of Computing 3, 81–102 (2007); Preliminary Version in Proc. 34th ACM Symposium on Theory of Computing (2002)
Alon, N., Spencer, J.: The Probabilistic Method. John Wiley and Sons, Chichester (2002)
Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width. Journal of Computer and System Sciences 74, 323–334 (2008); Preliminary version in Proc. 18th IEEE Conference on Computational Complexity (2003)
Atserias, A., Fichte, J.K., Thurley, M.: Clause learning algorithms with many restarts and bounded-width resolution. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 114–127. Springer, Heidelberg (2009)
Bayardo Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solver real-world SAT instances. In: Proc. 14th Natl. Conference on Artificial Intelligence, pp. 203–208 (1997)
Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)
Ben-Sasson, E., Wigderson, A.: Short proofs are narrow — resolution made simple. Journal of the ACM 48 (2001); Preliminary Version in Proc. 31st ACM Symposium on Theory of Computing (1999)
Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Computational Complexity 10(4), 261–276 (2001)
Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution refinements that characterize DLL algorithms with clause learning. Logical Methods in Computer Science 4(4) (2008)
Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Communications of the ACM 5(7), 394–397 (1962)
Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330. Springer, Heidelberg (1997)
Hertel, P., Bacchus, F., Pitassi, T., van Gelder, A.: Clause learning can effectively p-simulate general propositional resolution. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 283–290. AAAI Press, Menlo Park (2008)
Hoffmann, J.: Resolution proofs and DLL-algorithms with clause learning. Diploma Thesis, LMU München (2007)
Iwama, K., Miyazaki, S.: Tree-like resolution is superpolynomially slower than dag-like resolution for the pigeonhole principle. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, p. 133. Springer, Heidelberg (1999)
Johannsen, J.: An exponential lower bound for width-restricted clause learning. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 128–140. Springer, Heidelberg (2009)
Kolaitis, P.G., Vardi, M.Y.: On the expressive power of Datalog: Tools and a case study. Journal of Computer and System Sciences 51(1), 110–134 (1990); Preliminary version in Proc. 9th ACM Symposium on Principles of Database Systems (1990)
Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22, 253–274 (1985)
Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)
Margulis, G.A.: Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and concentrators. Problems of Information Transmission 24, 39–46 (1988)
Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer, Heidelberg (2009)
Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing 33(5), 1171–1200 (2004); Preliminary version in Proc. 43rd IEEE Symposium on Foundations of Computer Science (2002)
Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: Proc. IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 220–227 (1996)
Stålmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33, 277–280 (1996)
Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125 (1968)
Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: Proc. IEEE/ACM International Conference on Computer Aided Design (ICCAD), pp. 279–285 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ben-Sasson, E., Johannsen, J. (2010). Lower Bounds for Width-Restricted Clause Learning on Small Width Formulas. In: Strichman, O., Szeider, S. (eds) Theory and Applications of Satisfiability Testing – SAT 2010. SAT 2010. Lecture Notes in Computer Science, vol 6175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14186-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-14186-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14185-0
Online ISBN: 978-3-642-14186-7
eBook Packages: Computer ScienceComputer Science (R0)