Abstract
KReator is a toolbox for representing, learning, and automated reasoning with various approaches combining relational first-order logic with probabilities. We give a brief overview of the KReator system and its automated reasoning facilities.
The research reported here was partially supported by the Deutsche Forschungsgemeinschaft (grants BE 1700/7-1 and KE 1413/2-1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Finthammer, M., Beierle, C., Berger, B., Kern-Isberner, G.: Probabilistic reasoning at optimum entropy with the MEcore system. In: Lane, H.C., Guesgen, H.W. (eds.) Proceedings 22nd International FLAIRS Conference, FLAIRS’09. AAAI Press, Menlo Park (2009)
Finthammer, M., Loh, S., Thimm, M.: Towards a toolbox for relational probabilistic knowledge representation, reasoning, and learning. In: Relational Approaches to Knowledge Representation and Learning. Workshop at KI-2009, Paderborn, Germany, Informatik-Bericht, vol. 354, pp. 34–48. FernUniv. in Hagen (2009)
Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
Kern-Isberner, G.: Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artificial Intelligence 98, 169–208 (1998)
Kok, S., Singla, P., Richardson, M., Domingos, P., Sumner, M., Poon, H., Lowd, D., Wang, J.: The Alchemy System for Statistical Relational AI: User Manual. Department of Computer Science and Engineering. University of Washington (2008)
Loh, S., Thimm, M., Kern-Isberner, G.: On the problem of grounding a relational probabilistic conditional knowledge base. In: Proceedings of the 14th International Workshop on Non-Monotonic Reasoning (NMR’10), Toronto, Canada (May 2010)
Paris, J.B.: The uncertain reasoner’s companion – A mathematical perspective. Cambridge University Press, Cambridge (1994)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1998)
Rödder, W., Meyer, C.-H.: Coherent knowledge processing at maximum entropy by SPIRIT. In: Horvitz, E., Jensen, F. (eds.) Proceedings 12th Conference on Uncertainty in Artificial Intelligence, pp. 470–476. Morgan Kaufmann, San Francisco (1996)
Rödder, W., Reucher, E., Kulmann, F.: Features of the expert-system-shell SPIRIT. Logic Journal of the IGPL 14(3), 483–500 (2006)
Thimm, M., Finthammer, M., Loh, S., Kern-Isberner, G., Beierle, C.: A system for relational probabilistic reasoning on maximum entropy. In: Proceedings 23rd International FLAIRS Conference, FLAIRS’10. AAAI Press, Menlo Park (to appear, 2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beierle, C., Finthammer, M., Kern-Isberner, G., Thimm, M. (2010). Automated Reasoning for Relational Probabilistic Knowledge Representation. In: Giesl, J., Hähnle, R. (eds) Automated Reasoning. IJCAR 2010. Lecture Notes in Computer Science(), vol 6173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14203-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-14203-1_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14202-4
Online ISBN: 978-3-642-14203-1
eBook Packages: Computer ScienceComputer Science (R0)