Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Performance of a New Parallel Algorithm for Large-Scale Simulations of Nonlinear Partial Differential Equations

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6067))

  • 1382 Accesses

Abstract

A new parallel numerical algorithm based on generating suitable random trees has been developed for solving nonlinear parabolic partial differential equations. This algorithm is suited for current high performance supercomputers, showing a remarkable performance and arbitrary scalability. While classical techniques based on a deterministic domain decomposition exhibits strong limitations when increasing the size of the problem (mainly due to the intercommunication overhead), probabilistic methods allow us to exploit massively parallel architectures since the problem can be fully decoupled. Some examples have been run on a high performance computer, being scalability and performance carefully analyzed. Large-scale simulations confirmed that computational time decreases proportionally to the cube of the number of processors, whereas memory reduces quadratically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Domain decomposition solution of elliptic boundary-value problems. SIAM J. Sci. Comput. 27(2), 440–457 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Probabilistically induced domain decomposition methods for elliptic boundary-value problems. J. Comput. Phys. 210(2), 421–438 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Acebrón, J.A., Spigler, R.: Supercomputing applications to the numerical modeling of industrial and applied mathematics problems. J. Supercomputing 40, 67–80 (2007)

    Article  Google Scholar 

  4. Acebrón, J.A., Spigler, R.: A fully scalable parallel algorithm for solving elliptic partial differential equations. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 727–736. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Acebrón, J.A., Rodríguez-Rozas, A., Spigler, R.: Efficient parallel solution of nonlinear parabolic partial differential equations by a probabilistic domain decomposition (2009) (submitted)

    Google Scholar 

  6. Acebrón, J.A., Rodríguez-Rozas, A., Spigler, R.: Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees. J. Comput. Phys. 228(15), 5574–5591 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Antia, H.M.: Numerical methods for scientists and engineers. Tata McGraw-Hill, New Delhi (1995)

    Google Scholar 

  8. Arbenz, P., Cleary, A., Dongarra, J., Hegland, M.: A comparison of parallel solvers for diagonally dominant and general narrow-banded linear systems. Parallel and Distributed Computing Practices 2(4), 385–400 (1999)

    Google Scholar 

  9. Arbenz, P., Cleary, A., Dongarra, J., Hegland, M.: A comparison of parallel solvers for diagonally dominant and general narrow-banded linear systems II. In: EuroPar 1999 Parallel Processing, pp. 1078–1087. Springer, Berlin (1999)

    Chapter  Google Scholar 

  10. Keyes, D.E.: Domain Decomposition Methods in the Mainstream of Computational Science. In: Proceedings of the 14th International Conference on Domain Decomposition Methods, pp. 79–93. UNAM Press, Mexico City (2003)

    Google Scholar 

  11. McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. on Pure and Appl. Math. 28, 323–331 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Clarendon Press, Oxford (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Acebrón, J.A., Rodríguez-Rozas, Á., Spigler, R. (2010). On the Performance of a New Parallel Algorithm for Large-Scale Simulations of Nonlinear Partial Differential Equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6067. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14390-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14390-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14389-2

  • Online ISBN: 978-3-642-14390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics