Abstract
We study the online problem of scheduling unit-time parallel jobs on hypercubes. A parallel job has to be scheduled between its release time and deadline on a subcube of processors. The objective is to maximize the number of early jobs. We provide a 1.6-competitive algorithm for the problem and prove that no deterministic algorithm is better than 1.4-competitive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baptiste, P., Schieber, B.: A note on scheduling tall/small multiprocessor tasks with unit processing time to minimize maximum tardiness. J. Sched. 6, 395–404 (2003)
Dürr, C., Hurand, M.: Finding total unimodularity in optimization problems solved by linear programs. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 315–326. Springer, Heidelberg (2006)
Ye, D., Zhang, G.: Maximizing the throughput of parallel jobs on hypercubes. Inform. Process. Lett. 102, 259–263 (2007)
Zajíček, O.: A note on scheduling parallel unit jobs on hypercubes. Int. J. on Found. Comput. Sci. 20(2), 341–349 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zajíček, O., Sgall, J., Ebenlendr, T. (2010). Online Scheduling of Parallel Jobs on Hypercubes: Maximizing the Throughput. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2009. Lecture Notes in Computer Science, vol 6068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14403-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-14403-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14402-8
Online ISBN: 978-3-642-14403-5
eBook Packages: Computer ScienceComputer Science (R0)