Abstract
This paper introduces a new efficient algorithm, called MXL3, for computing Gröbner bases of zero-dimensional ideals. The MXL3 is based on XL algorithm, mutant strategy, and a new sufficient condition for a set of polynomials to be a Gröbner basis. We present experimental results comparing the behavior of MXL3 to F4 on HFE and random generated instances of the MQ problem. In both cases the first implementation of the MXL3 algorithm succeeds faster and uses less memory than Magma’s implementation of F4.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albrecht, M., Bard, G.: M4RI Linear Algebra over GF(2) (2008), http://m4ri.sagemath.org/index.html
Becker, T., Kredel, H., Weispfenning, V.: Gröbner bases: a computational approach to commutative algebra, April 1993. Springer, London (1993)
Brickenstein, M., Dreyer, A.: Polybori: A framework for gröbner-basis computations with boolean polynomials. Journal of Symbolic Computation 44(9), 1326–1345 (2009); Effective Methods in Algebraic Geometry
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical Institute, University of Innsbruck, Austria, 1965 (English translation in Journal of Symbolic Computation (2004)
Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of gröbner bases. Johannes Kepler University Linz, London, UK, vol. 72, pp. 3–21. Springer, Heidelberg (1979)
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)
Courtois, N.T.: Experimental Algebraic Cryptanalysis of Block Ciphers (2007), http://www.cryptosystem.net/aes/toyciphers.html
Ding, J.: Mutants and its impact on polynomial solving strategies and algorithms. Privately distributed research note, University of Cincinnati and Technical University of Darmstadt (2006)
Ding, J., Buchmann, J., Mohamed, M.S.E., Moahmed, W.S.A., Weinmann, R.-P.: MutantXL. In: Proceedings of the 1st international conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, April 2008, pp. 16–22. LMIB (2008)
Ding, J., Carbarcas, D., Schmidt, D., Buchmann, J., Tohaneanu, S.: Mutant Gröbner Basis Algorithm. In: Proceedings of the 1st international conference on Symbolic Computation and Cryptography (SCC 2008), Beijing, China, April 2008, pp. 23–32. LMIB (2008)
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Pure and Applied Algebra 139(1-3), 61–88 (1999)
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 international symposium on Symbolic and algebraic computation (ISSAC), Lille, France, July 2002, pp. 75–83. ACM, New York (2002)
Faugère, J.-C., Ars, G.: Comparison of XL and Gröbner basis algorithms over Finite Fields. Research Report RR-5251, Institut National de Recherche en Informatique et en Automatique, INRIA (2004)
Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)
Mohamed, M.S.E., Ding, J., Buchmann, J., Werner, F.: Algebraic Attack on the MQQ Public Key Cryptosystem. In: Proceedings of the 8th International Conference on Cryptology And Network Security (CANS 2009), Kanazawa, Ishikawa, Japan, December 2009. LNCS, Springer, Heidelberg (to appear, 2009)
Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2: Solving Polynomial Equations over GF(2) using an Improved Mutant Strategy. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer, Heidelberg (2008)
Sugita, M., Kawazoe, M., Imai, H.: Relation between the XL Algorithm and Gröbner Basis Algorithms. Transactions on Fundamentals of Electronics, Communications and Computer Sciences (IEICE) E89-A(1), 11–18 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S. (2010). MXL3: An Efficient Algorithm for Computing Gröbner Bases of Zero-Dimensional Ideals. In: Lee, D., Hong, S. (eds) Information, Security and Cryptology – ICISC 2009. ICISC 2009. Lecture Notes in Computer Science, vol 5984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14423-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-14423-3_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14422-6
Online ISBN: 978-3-642-14423-3
eBook Packages: Computer ScienceComputer Science (R0)