Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Application of Compressed Sensing for Secure Image Coding

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6221))

Abstract

The secure image coding scheme using compressed sensing (CS) is proposed and the secrecy of the scheme is explored. We verify that the CS-based coding scheme can provide a guarantee of secrecy by analysis and simulation. In our approach, random matrices are used as keys of decryption. Based on the feasibility of random symmetric signs matrices in compressed sensing, we obtain a theoretical result that the signal compressed sensing using sparse random binary matrices can be exactly recovered with high probability. Numerical results verify the theory and show matrices proposed in this paper perform equally to the prominent Gaussian matrices when measurement rate is higher than an equivalence threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Candès, E.J., Romberg, J., Tao, T.: Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Trans. Inform. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Donoho, D.L.: Compressed Sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Duarte, M., Wakin, M., Baron, D., Baraniuk, R.: Universal Distributed Sensing via Random Projections. In: Proceedings of the 5th International Conference on Information Processing in Sensor Networks, pp. 177–185. ACM Press, New York (2006)

    Google Scholar 

  4. Lian, S., Liu, Z., Ren, Z., Wang, H.: Secure Advanced Video Coding Based on Selective Encryption Algorithms. IEEE Trans. on Consum. Electr. 52, 621–629 (2006)

    Article  Google Scholar 

  5. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear Total Variation Based Noise Removal Algorithms. Physical D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tropp, J.A., Gilbert, A.C.: Signal Recovery from Partial Information via Orthogonal Matching Pursuit. IEEE Trans. Inform. Theory 53, 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical Journal 28, 654–715 (1949)

    MathSciNet  MATH  Google Scholar 

  8. Candès, E.J.: The Restricted Isometry Property and Its Implications for Compressed Sensing. C. R. Acad. Sci. Paris Sr. I, Math. 346, 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baraniuk, R.G., Davenport, M., DeVore, R.A., Wakin, M.: A Simple Proof of the Restricted Isometry Property for Random Matrices. Constructive Approximation 28, 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Tao, T.: Decoding by Linear Programming. IEEE Trans. Inform. Theory 51, 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, G., Jiao, S., Xu, X. (2010). Application of Compressed Sensing for Secure Image Coding. In: Pandurangan, G., Anil Kumar, V.S., Ming, G., Liu, Y., Li, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2010. Lecture Notes in Computer Science, vol 6221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14654-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14654-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14653-4

  • Online ISBN: 978-3-642-14654-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics