Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Feature Representations for the Recognition of 3D Emblematic Gestures

  • Conference paper
Human Behavior Understanding (HBU 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6219))

Included in the following conference series:

Abstract

In human-machine interaction, gestures play an important role as input modality for natural and intuitive interfaces. The class of gestures often called “emblems” is of special interest since they convey a well-defined meaning in an intuitive way. We present an approach for the visual recognition of 3D dynamic emblematic gestures in a smart room scenario using a HMM-based recognition framework. In particular, we assess the suitability of several feature representations calculated from a gesture trajectory in a detailed experimental evaluation on realistic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kendon, A.: Current Issues in the Study of Gestures. In: The Biological Foundation of Gestures. Motor and Semiotic Aspects, pp. 23–47. Lawrence Erlbaum Assoc., Mahwah (1986)

    Google Scholar 

  2. Eisenstein, J., Davis, R.: Visual and linguistic information in gesture classification. In: Proc. Int. Conf. on Multimodal Interfaces, pp. 113–120 (2004)

    Google Scholar 

  3. Atkeson, C.G., Hollerbach, J.M.: Kinematic features of unrestrained vertical arm movements. Journal of Neuroscience 5(9), 2318–2330 (1985)

    Google Scholar 

  4. Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Trans. Patt. Anal. Mach. Int. 22(1), 63–84 (2000)

    Article  Google Scholar 

  5. Richarz, J., Plötz, T., Fink, G.A.: Real-time detection and interpretation of 3d deictic gestures for interaction with an intelligent environment. In: Proc. Int. Conf. on Pattern Recognition (2008)

    Google Scholar 

  6. Schauerte, B., et al.: Multi-modal and multi-camera attention in smart environments. In: Proc. Int. Conf. on Multimodal Interfaces and Workshop on Machine Learning for Multi-Modal Interaction (2009)

    Google Scholar 

  7. Ong, S., Ranganath, S.: Automatic sign language analysis: A survey and the future beyond lexical meaning. IEEE Trans. Patt. Anal. Mach. Int. 27(6), 873–891 (2005)

    Article  Google Scholar 

  8. Wang, Q., et al.: Viewpoint invariant sign language recognition. Computer Vision and Image Understanding 108, 87–97 (2007)

    Article  Google Scholar 

  9. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)

    Article  Google Scholar 

  10. Thurau, C., Hlavac, V.: Pose primitive based human action recognition in videos or still images. In: Proc. Int. Conf. on Computer Vision and Pattern Recog. (2008)

    Google Scholar 

  11. Rapantzikos, K., Avrithis, Y., Kollias, S.: Dense saliency-based spatiotemporal feature points for action recognition. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 1454–1461 (2009)

    Google Scholar 

  12. Elmezain, M., et al.: A hidden markov model-based continuous gesture recognition system for hand motion trajectory. In: Proc. Int. Conf. on Pattern Recog. (2008)

    Google Scholar 

  13. Shamaie, A., Sutherland, A.: Bayesian fusion of hidden markov models for understanding bimanual movements. In: Proc. Int. Conf. on Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  14. Alon, J., et al.: A unified framework for gesture recognition and spatiotemporal gesture segmentation. IEEE Trans. Patt. Anal. Mach. Int. 31(9), 1685–1699 (2009)

    Article  Google Scholar 

  15. Caridakis, G., et al.: SOMM: Self organizing markov map for gesture recognition. Pattern Recognition Letters 31, 52–59 (2010)

    Article  Google Scholar 

  16. Rett, J., Dias, J.: Gesture recognition using a marionette model and dynamic bayesian networks (DBNs). In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 69–80. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Calinon, S., Billard, A.: Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM. In: Proc. Int. Conf. on Machine Learning, pp. 105–112 (2005)

    Google Scholar 

  18. Kirishima, T., Sato, K., Chihara, K.: Real-time gesture recognition by learning and selective control of visual interest points. IEEE Trans. Pattern Analyis and Mach. Int. 27(3), 351–364 (2005)

    Article  Google Scholar 

  19. Schenk, J., Kaiser, M., Rigoll, G.: Selecting features in on-line handwritten whiteboard note recognition: SFS or SFFS? In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 1251–1254 (2009)

    Google Scholar 

  20. Graves, A., et al.: A novel connectionist system for unconstrained handwriting recognition. Trans. Pattern Analyis and Mach. Int. 31(5), 855–868 (2009)

    Article  Google Scholar 

  21. Daifallah, K., Zarka, N., Jamous, H.: Recognition-based segmentation algorithm for on-line arabic handwriting. In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 886–890 (2009)

    Google Scholar 

  22. Fink, G.A., Wienecke, M., Sagerer, G.: Video-based on-line handwriting recognition. In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 226–230 (2001)

    Google Scholar 

  23. Fink, G.A., Plötz, T.: Developing pattern recognition systems based on markov models: The ESMERALDA framework. Pattern Recognition and Image Analysis 18(2), 207–215 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richarz, J., Fink, G.A. (2010). Feature Representations for the Recognition of 3D Emblematic Gestures. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds) Human Behavior Understanding. HBU 2010. Lecture Notes in Computer Science, vol 6219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14715-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14715-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14714-2

  • Online ISBN: 978-3-642-14715-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics