Abstract
In human-machine interaction, gestures play an important role as input modality for natural and intuitive interfaces. The class of gestures often called “emblems” is of special interest since they convey a well-defined meaning in an intuitive way. We present an approach for the visual recognition of 3D dynamic emblematic gestures in a smart room scenario using a HMM-based recognition framework. In particular, we assess the suitability of several feature representations calculated from a gesture trajectory in a detailed experimental evaluation on realistic data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kendon, A.: Current Issues in the Study of Gestures. In: The Biological Foundation of Gestures. Motor and Semiotic Aspects, pp. 23–47. Lawrence Erlbaum Assoc., Mahwah (1986)
Eisenstein, J., Davis, R.: Visual and linguistic information in gesture classification. In: Proc. Int. Conf. on Multimodal Interfaces, pp. 113–120 (2004)
Atkeson, C.G., Hollerbach, J.M.: Kinematic features of unrestrained vertical arm movements. Journal of Neuroscience 5(9), 2318–2330 (1985)
Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Trans. Patt. Anal. Mach. Int. 22(1), 63–84 (2000)
Richarz, J., Plötz, T., Fink, G.A.: Real-time detection and interpretation of 3d deictic gestures for interaction with an intelligent environment. In: Proc. Int. Conf. on Pattern Recognition (2008)
Schauerte, B., et al.: Multi-modal and multi-camera attention in smart environments. In: Proc. Int. Conf. on Multimodal Interfaces and Workshop on Machine Learning for Multi-Modal Interaction (2009)
Ong, S., Ranganath, S.: Automatic sign language analysis: A survey and the future beyond lexical meaning. IEEE Trans. Patt. Anal. Mach. Int. 27(6), 873–891 (2005)
Wang, Q., et al.: Viewpoint invariant sign language recognition. Computer Vision and Image Understanding 108, 87–97 (2007)
Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Trans. on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)
Thurau, C., Hlavac, V.: Pose primitive based human action recognition in videos or still images. In: Proc. Int. Conf. on Computer Vision and Pattern Recog. (2008)
Rapantzikos, K., Avrithis, Y., Kollias, S.: Dense saliency-based spatiotemporal feature points for action recognition. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 1454–1461 (2009)
Elmezain, M., et al.: A hidden markov model-based continuous gesture recognition system for hand motion trajectory. In: Proc. Int. Conf. on Pattern Recog. (2008)
Shamaie, A., Sutherland, A.: Bayesian fusion of hidden markov models for understanding bimanual movements. In: Proc. Int. Conf. on Automatic Face and Gesture Recognition (2004)
Alon, J., et al.: A unified framework for gesture recognition and spatiotemporal gesture segmentation. IEEE Trans. Patt. Anal. Mach. Int. 31(9), 1685–1699 (2009)
Caridakis, G., et al.: SOMM: Self organizing markov map for gesture recognition. Pattern Recognition Letters 31, 52–59 (2010)
Rett, J., Dias, J.: Gesture recognition using a marionette model and dynamic bayesian networks (DBNs). In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 69–80. Springer, Heidelberg (2006)
Calinon, S., Billard, A.: Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM. In: Proc. Int. Conf. on Machine Learning, pp. 105–112 (2005)
Kirishima, T., Sato, K., Chihara, K.: Real-time gesture recognition by learning and selective control of visual interest points. IEEE Trans. Pattern Analyis and Mach. Int. 27(3), 351–364 (2005)
Schenk, J., Kaiser, M., Rigoll, G.: Selecting features in on-line handwritten whiteboard note recognition: SFS or SFFS? In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 1251–1254 (2009)
Graves, A., et al.: A novel connectionist system for unconstrained handwriting recognition. Trans. Pattern Analyis and Mach. Int. 31(5), 855–868 (2009)
Daifallah, K., Zarka, N., Jamous, H.: Recognition-based segmentation algorithm for on-line arabic handwriting. In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 886–890 (2009)
Fink, G.A., Wienecke, M., Sagerer, G.: Video-based on-line handwriting recognition. In: Proc. Int. Conf. on Document Analysis and Recognition, pp. 226–230 (2001)
Fink, G.A., Plötz, T.: Developing pattern recognition systems based on markov models: The ESMERALDA framework. Pattern Recognition and Image Analysis 18(2), 207–215 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Richarz, J., Fink, G.A. (2010). Feature Representations for the Recognition of 3D Emblematic Gestures. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds) Human Behavior Understanding. HBU 2010. Lecture Notes in Computer Science, vol 6219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14715-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-14715-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14714-2
Online ISBN: 978-3-642-14715-9
eBook Packages: Computer ScienceComputer Science (R0)