Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Information from the Target Language to Improve Crosslingual Text Classification

  • Conference paper
Advances in Natural Language Processing (NLP 2010)

Abstract

Crosslingual text classification consists of exploiting labeled documents in a source language to classify documents in a different target language. In addition to the evident translation problem, this task also faces some difficulties caused by the cultural discrepancies manifested in both languages by means of different topic distributions. Such discrepancies make the classifier unreliable for the categorization task. In order to tackle this problem we propose to improve the classification performance by using information embedded in the own target dataset. The central idea of the proposed approach is that similar documents must belong to the same category. Therefore, it classifies the documents by considering not only their own content but also information about the assigned category to other similar documents from the same target dataset. Experimental results using three different languages evidence the appropriateness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34, 1–47 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bel, N., Koster, C.H.A., Villegas, M.: Cross-lingual text categorization. In: Koch, T., Sølvberg, I.T. (eds.) ECDL 2003. LNCS, vol. 2769, pp. 126–139. Springer, Heidelberg (2003)

    Google Scholar 

  3. de Melo, G., Siersdorfer, S.: Multilingual text classification using ontologies. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 541–548. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Rigutini, L., Maggini, M., Liu, B.: An EM based training algorithm for cross-language text categorization. In: WI 2005: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, Washington, DC, USA, pp. 529–535. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  5. Ling, X., Xue, G.R., Dai, W., Jiang, Y., Yang, Q., Yu, Y.: Can Chinese web pages be classified with English data source? In: WWW 2008: Proceeding of the 17th International Conference on World Wide Web, pp. 969–978. ACM, New York (2008)

    Chapter  Google Scholar 

  6. Wan, X.: Co-training for cross-lingual sentiment classification. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, Suntec, Singapore, Association for Computational Linguistics, pp. 235–243 (2009)

    Google Scholar 

  7. Han, E.H., Karypis, G.: Centroid-based document classification: Analysis and experimental results. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 424–431. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Cardoso-Cachopo, A., Oliveira, A.L.: Semi-supervised single-label text categorization using centroid-based classifiers. In: SAC 2007: Proceedings of the 2007 ACM Symposium on Applied Computing, pp. 844–851. ACM, New York (2007)

    Google Scholar 

  9. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

    Google Scholar 

  10. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramírez-de-la-Rosa, G., Montes-y-Gómez, M., Villaseñor-Pineda, L., Pinto-Avendaño, D., Solorio, T. (2010). Using Information from the Target Language to Improve Crosslingual Text Classification. In: Loftsson, H., Rögnvaldsson, E., Helgadóttir, S. (eds) Advances in Natural Language Processing. NLP 2010. Lecture Notes in Computer Science(), vol 6233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14770-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14770-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14769-2

  • Online ISBN: 978-3-642-14770-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics