Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Independent Component Analysis by Modified Kernel Density Estimation

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6215))

Included in the following conference series:

  • 2012 Accesses

Abstract

In this paper, an adaptive algorithm for linear instantaneous independent component analysis is proposed, which is is based on minimizing the mutual information contrast function. Adaptive density estimation by modified kernel density estimation is applied to estimate the unknown probability density functions as well as their first and second derivatives. Empirical comparisons with several popular algorithms confirm the efficiency of the proposed algorithm.

This work is supported by natural science foundation of Shanghai, China, No.10ZR1413000, and scientific research foundation for excellent young teachers of Shanghai, China, No.gjd09005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comon, P., Jutten, C., Herault, J.: Blind separation of sources, part II: problems statement. Signal Processing 24, 11–20 (1991)

    Article  MATH  Google Scholar 

  2. Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Cardoso, J.F., Souloumiac, A., Paris, T.: Blind beamforming for non-Gaussian signals. IEE Proceedings F, Radar and Signal Processing 140, 362–370 (1993)

    Article  Google Scholar 

  4. Bell, A.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  5. Lee, T.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11, 417–441 (1999)

    Article  Google Scholar 

  6. Koldovský, Z., Tichavský, P., Oja, E.: Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound. IEEE Transactions on Neural Networks 17, 1265–1277 (2006)

    Article  Google Scholar 

  7. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  8. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  9. Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons, Chichester (1991)

    Book  MATH  Google Scholar 

  10. Silverman, B.: Kernel density estimation using the fast Fourier transform. Applied Statistics 31, 93–99 (1982)

    Article  MATH  Google Scholar 

  11. Silverman, B.: Density Estimation. Chapman and Hall, London (1986)

    Book  MATH  Google Scholar 

  12. Pham, D.: Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Transactions on Signal Processing 44, 2768–2779 (1996)

    Article  Google Scholar 

  13. The FastICA package, http://www.cis.hut.fi/projects/ica/fastica/

  14. The EFICA package, http://itakura.kes.tul.cz/zbynek/efica.htm

  15. The JADE package, http://www.tsi.enst.fr/icacentral/Algos/cardoso/JnS.tar

  16. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xue, Y., Wang, Y., Han, Y. (2010). Adaptive Independent Component Analysis by Modified Kernel Density Estimation. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14922-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14921-4

  • Online ISBN: 978-3-642-14922-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics