Abstract
In this paper, an adaptive algorithm for linear instantaneous independent component analysis is proposed, which is is based on minimizing the mutual information contrast function. Adaptive density estimation by modified kernel density estimation is applied to estimate the unknown probability density functions as well as their first and second derivatives. Empirical comparisons with several popular algorithms confirm the efficiency of the proposed algorithm.
This work is supported by natural science foundation of Shanghai, China, No.10ZR1413000, and scientific research foundation for excellent young teachers of Shanghai, China, No.gjd09005.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Comon, P., Jutten, C., Herault, J.: Blind separation of sources, part II: problems statement. Signal Processing 24, 11–20 (1991)
Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)
Cardoso, J.F., Souloumiac, A., Paris, T.: Blind beamforming for non-Gaussian signals. IEE Proceedings F, Radar and Signal Processing 140, 362–370 (1993)
Bell, A.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)
Lee, T.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11, 417–441 (1999)
Koldovský, Z., Tichavský, P., Oja, E.: Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer-Rao lower bound. IEEE Transactions on Neural Networks 17, 1265–1277 (2006)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)
Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons, Chichester (1991)
Silverman, B.: Kernel density estimation using the fast Fourier transform. Applied Statistics 31, 93–99 (1982)
Silverman, B.: Density Estimation. Chapman and Hall, London (1986)
Pham, D.: Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Transactions on Signal Processing 44, 2768–2779 (1996)
The FastICA package, http://www.cis.hut.fi/projects/ica/fastica/
The EFICA package, http://itakura.kes.tul.cz/zbynek/efica.htm
The JADE package, http://www.tsi.enst.fr/icacentral/Algos/cardoso/JnS.tar
Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xue, Y., Wang, Y., Han, Y. (2010). Adaptive Independent Component Analysis by Modified Kernel Density Estimation. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-14922-1_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14921-4
Online ISBN: 978-3-642-14922-1
eBook Packages: Computer ScienceComputer Science (R0)