Abstract
The search for low autocorrelated binary sequences(LABS) is a combinatorial optimization problem, which is NP-hard. In this paper, we apply Greedy Randomized Adaptive Search Procedures (GRASP) to tackle the LABS problem. The algorithm is capable of systematically recovering best-known solutions reported by now. Furthermore, it can find out good autocorrelated binary sequences sequences in considerably less time as comparison with other heuristic methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernasconi, J.: Low Autocorrelation Binary Sequences: Statistical Mechanics and Configuration Space Analysis. Journal de Physique 48, 559–567 (1987)
Golay, M.: Sieves for Low Autocorrelation Binary Sequences. IEEE Transactions on Information Theory 23(1), 43–51 (1977)
Mertens, S.: Exhaustive Search for Low-autocorrelation Binary Sequences. Journal of Physics A: Mathematical and General 29, L473–L481 (1996)
Golay, M.: The Merit Factor of Long Low Autocorrelation Binary Sequences. IEEE Transactions on Information Theory 28(3), 543–549 (1982)
Militzer, B., Zamparelli, M., Beule, D.: Evolutionary Search for Low Autocorrelated Binary Sequences. IEEE Transactions on Evolutionary Computation 2(1), 34–39 (1998)
Wang, S.: Efficient Heuristic Method of Search for Binary Sequences with Good Aperiodic Autocorrelations. Electronics Letters 44(12), 731–732 (2003)
Dotu, I., Hentenryck, P.V.: A Note on Low Autocorrelation Binary Sequence. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2006. LNCS, vol. 4240, pp. 685–689. Springer, Heidelberg (2006)
Brglez, F., Li, X.Y., Stallman, M.F., Militzer, B.: Reliable Cost Prediction for Finding Optimal Solutions to Labs Problem: Evolutionary and Alternative Algorithms. In: Cantu-Paz, E. (ed.) 5th International Workshop on Frontiers in Evolutionary Algorithms, September 2003, pp. 26–30 (2003)
Gallardo, J.E., Cotta, C., Fernandez, A.J.: Finding Low Autocorrelation Binary Sequences with Memetic Algorithms. Applied Soft Computing 9, 1252–1256 (2009)
Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6, 109–133 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, H., Wang, S. (2010). GRASP for Low Autocorrelated Binary Sequences. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-14922-1_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14921-4
Online ISBN: 978-3-642-14922-1
eBook Packages: Computer ScienceComputer Science (R0)