Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Separating Pigment Components of Leaf Color Image Using FastICA

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6215))

Included in the following conference series:

Abstract

In this paper, the spatial distributions of pigments in foliage which lead to color variation are separated by independent component analysis (ICA) from a single leaf color image. The results can be applied to the reproduction of leaf color, the diagnosis of leaf disease, and leaf texture synthesis. Our results shows that the components of pigments which are different color influential factor are separated from leaf color image. We use images to demonstrate results and show how each component of pigment affects the leaf color.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martin, D.P., Rybicki, E.P.: Microcomputer-based quantification of maize streak virus symptoms in Zea mays. Phytopathology 88, 422–427 (1998)

    Article  Google Scholar 

  2. Chen, N., Hsiang, T.H., Goodwin, P.H.: Use of green fluorescent protein to quantify the growth of Colletotrichum during infection of tobacco. J. Microbiol. Methods 53, 113–122 (2003)

    Article  Google Scholar 

  3. Schaberg, P.G., Van Den Berg, A.K., Murakami, P.F., Shane, J.B., Donnelly, J.R.: Factors influencing red expression in autumn foliage of sugar maple trees. Tree Physiol. 23, 325–333 (2003)

    Article  Google Scholar 

  4. Murakami, P.F., Turner, M.R., Van den Berg, A.K., Schaberg, P.G.: An instructionalguide for leaf color analysis using digital imaging software. United States Department of Agriculture Publication. Tech. Rep. NE-327 (2005)

    Google Scholar 

  5. El-Helly, M., El-Beltagy, S., Rafea, A.: Image analysis based interface for diagnosticexpert systems. In: Proceedings of the Winter international synposium on information and Communication Technologies, pp. 1–6. Trinity College, Dublin (2004)

    Google Scholar 

  6. Desbeoint, B., Galin, E., Akkouche, S., Grosjean, J.: Modeling autumn sceneries Eurographics 2006 Conference, Short Papers Proceedings, Vienna, Austria. pp. 107–110 (2006)

    Google Scholar 

  7. Mochizuki, S., Cai, D., Komori, T., Kimura, H., Hori, R.: Virtual autumn coloring system based on biological and fractal model. In: Pacific Graphics 2001 Computer Graphics and Applications, pp.348–354 (2001)

    Google Scholar 

  8. Wang, L.F., Wang, W.L., Dorsey, J., Yang, X., Guo, B.N., Shum, H.Y.: Real-Time Rendering of Plant Leaves. ACM Tran. On Graphics 24, 712–719 (2005)

    Article  Google Scholar 

  9. Mochizuki, S., Horie, D., Cai, D.S.: Stealing Autumn Colors. In: ACM SIGGRAPH 2005 (2005)

    Google Scholar 

  10. Bell, A., Sejnowski, T.: The independent components of nature scenes are edge filters. Vision Research 37, 3327–3338 (1997)

    Article  Google Scholar 

  11. Lewicki, M., Olshausen, B.: Inferring sparse, overcomplete image codes using an efficient coding framework. In: Advances in Neural Information Processing Systems, vol. 10, pp. 556–562 (1998)

    Google Scholar 

  12. Li, Y., Chi, Z.R., Feng, D.: Leaf vein extraction using independent component analysis. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, pp. 8–11 (2006)

    Google Scholar 

  13. Inoue, T., Fujii, Y., Itoh, K., et al.: Independent component analysis for a small number of elements in high-dimensional space. In: Proceedings of Japan Optics 1995, pp. 105–106 (1995)

    Google Scholar 

  14. Tsumura, N., Haneishi, H., Miyake, Y.: Independent component analysis of skin color image. Journal of Optical Society of America A 16(9), 2169–2176 (1999)

    Article  Google Scholar 

  15. Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., Miyake, Y.: Image-based skin color and texture analysis/ synthesis by extracting hemoglobin and melanin information in the skin. ACM Transactions on Graphics 22, 770–779 (2003)

    Article  Google Scholar 

  16. Comon, P.: Independent component analysis - a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  17. Park, W.B., Ryu, E., Song, Y.J.: Visual feature extraction under wavelet domain for image retrieval. Key Engineering Materials 277, 206–211 (2005)

    Article  Google Scholar 

  18. Lee, T.W., Lewicki, M.: Unsupervised Image Classification, Segmentation and Enhancement Using ICA Mixture Models. IEEE Transactions on Image Processing 11, 270–279 (2002)

    Article  Google Scholar 

  19. Hyvarinen, A., Hoyer, P., Hurri, J.: Extensions of ICA as Models of Natural Images and Visual Processing. In: 4th International Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, pp. 963–974 (2003)

    Google Scholar 

  20. Xue, S., Wang, J.P., Tong, X., Dai, Q.H., Guo, B.N.: Image-based Material Weathering. In: Eurographics 2008, Computer Graphics Forum, vol. 27 (2008)

    Google Scholar 

  21. Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering Intrinsic Images from a Single Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9), 1459–1472 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tian, Y., Zhao, C., Lu, S., Guo, X. (2010). Separating Pigment Components of Leaf Color Image Using FastICA. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14922-1_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14921-4

  • Online ISBN: 978-3-642-14922-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics