Abstract
Inertia weight is one of the most important adjustable parameters of particle swarm optimization (PSO). The proper selection of inertia weight can prove a right balance between global search and local search. In this paper, a novel PSOs with non-linear inertia weight based on the arc tangent function is provided. The performance of the proposed PSO models are compared with standard PSO with linearly-decrease inertia weight using four benchmark functions. The experimental results demonstrate that our proposed PSO models are better than standard PSO in terms of convergence rate and solution precision. The proposed novel PSOs are also used to solve an improved portfolio optimization model with complex constraints and the primary results demonstrate their effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.C.: A New Optimizer Using Particle Swarm Theory. In: 6th International Symposium on Micromachine and Human Science, pp. 39–43 (1995)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)
Clerc, M., Kennedy, J.: The Particle Swarm: Explosion Stability and Convergence in a Multi-Dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)
Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithms and Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)
Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Congress on Evolutionary Computation, vol. 1, pp. 68–81 (2001)
Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Congress on Evolutionary Computation, vol. 3, pp. 1945–1949 (1999)
Niu, B., Li, L.: A Novel PSO-DE-Based Hybrid Algorithm for Global Optimization. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 156–163. Springer, Heidelberg (2008)
Niu, B., Xue, B., Li, L.: Symbiotic Multi-swarm PSO for Portfolio Optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 776–784. Springer, Heidelberg (2009)
Zhang, L.P., Yu, H.J., Hu, S.X.: Optimal Choice of Parameters for Particle Swarm Optimization. Journal of Zhejiang University Science 6, 528–534 (2004)
Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimizations. In: Porto, V.W., et al. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)
Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: IEEE International Conference on Evolutional Computation, pp. 69–73 (1998)
Wang, L., Wang, X.K.: Modified Particle Swarm Optimizer Using Non-Linear Inertia Weight. Computer Engineering and Applications 43, 47–48 (2007)
Van den Bergh, F.: An Analysis of Particle Swarm Optimizer, University of Pretoria, South Africa (2002)
Niu, B., Zhu, Y.L., He, X.X.: MCPSO: A Multi-Swarm Cooperative Particle Swarm Optimizer. Applied Mathematics and Computation 185, 1050–1062 (2007)
Liang, J.J., Suganthan, P.N., Qin, A.K.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10, 281–295 (2006)
Parsopoulos, K.E., Vrahatis, M.N.: UPSO-A Unified Particle Swarm Optimization Scheme. Lecture Series on Computational Sciences, pp. 868–873 (2004)
Markowitz, H.W.: Foundations of Portfolio Theory. Journal of Finance 46, 469–477 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, L., Xue, B., Tan, L., Niu, B. (2010). Improved Particle Swarm Optimizers with Application on Constrained Portfolio Selection . In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-14922-1_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14921-4
Online ISBN: 978-3-642-14922-1
eBook Packages: Computer ScienceComputer Science (R0)