Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved Particle Swarm Optimizers with Application on Constrained Portfolio Selection

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6215))

Included in the following conference series:

Abstract

Inertia weight is one of the most important adjustable parameters of particle swarm optimization (PSO). The proper selection of inertia weight can prove a right balance between global search and local search. In this paper, a novel PSOs with non-linear inertia weight based on the arc tangent function is provided. The performance of the proposed PSO models are compared with standard PSO with linearly-decrease inertia weight using four benchmark functions. The experimental results demonstrate that our proposed PSO models are better than standard PSO in terms of convergence rate and solution precision. The proposed novel PSOs are also used to solve an improved portfolio optimization model with complex constraints and the primary results demonstrate their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: A New Optimizer Using Particle Swarm Theory. In: 6th International Symposium on Micromachine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  2. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International Conference on Neural Networks, vol. IV, pp. 1942–1948 (1995)

    Google Scholar 

  3. Clerc, M., Kennedy, J.: The Particle Swarm: Explosion Stability and Convergence in a Multi-Dimensional Complex Space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  4. Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithms and Particle Swarm Optimization. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Congress on Evolutionary Computation, vol. 1, pp. 68–81 (2001)

    Google Scholar 

  6. Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Congress on Evolutionary Computation, vol. 3, pp. 1945–1949 (1999)

    Google Scholar 

  7. Niu, B., Li, L.: A Novel PSO-DE-Based Hybrid Algorithm for Global Optimization. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS (LNAI), vol. 5227, pp. 156–163. Springer, Heidelberg (2008)

    Google Scholar 

  8. Niu, B., Xue, B., Li, L.: Symbiotic Multi-swarm PSO for Portfolio Optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 776–784. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Zhang, L.P., Yu, H.J., Hu, S.X.: Optimal Choice of Parameters for Particle Swarm Optimization. Journal of Zhejiang University Science 6, 528–534 (2004)

    Google Scholar 

  10. Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimizations. In: Porto, V.W., et al. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: IEEE International Conference on Evolutional Computation, pp. 69–73 (1998)

    Google Scholar 

  12. Wang, L., Wang, X.K.: Modified Particle Swarm Optimizer Using Non-Linear Inertia Weight. Computer Engineering and Applications 43, 47–48 (2007)

    Google Scholar 

  13. Van den Bergh, F.: An Analysis of Particle Swarm Optimizer, University of Pretoria, South Africa (2002)

    Google Scholar 

  14. Niu, B., Zhu, Y.L., He, X.X.: MCPSO: A Multi-Swarm Cooperative Particle Swarm Optimizer. Applied Mathematics and Computation 185, 1050–1062 (2007)

    Article  MATH  Google Scholar 

  15. Liang, J.J., Suganthan, P.N., Qin, A.K.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10, 281–295 (2006)

    Article  Google Scholar 

  16. Parsopoulos, K.E., Vrahatis, M.N.: UPSO-A Unified Particle Swarm Optimization Scheme. Lecture Series on Computational Sciences, pp. 868–873 (2004)

    Google Scholar 

  17. Markowitz, H.W.: Foundations of Portfolio Theory. Journal of Finance 46, 469–477 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Xue, B., Tan, L., Niu, B. (2010). Improved Particle Swarm Optimizers with Application on Constrained Portfolio Selection . In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14922-1_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14921-4

  • Online ISBN: 978-3-642-14922-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics