Abstract
Image rectification is a method to apply projective transformation to image pair which can ensure the epipolar lines in one horizontal line. There is only horizontal disparity in two images and the matching speed can be improved in this situation. A simple rectification method is described in this paper. It takes the element in the fundamental matrix and epipole as initial value and uses PSO to calculate eight optimal points according with rectification rule by RANSAC robust estimation method. Then, the practical and optimal projective transformation matrixes are confirmed. Epipolar line rectification experiments based on synthetical image and real image show the validity of the algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Faugeras, O.D.: Three-Dimensional Computer Vision: A Geometric View point. The MIT Press, Cambridge (1993)
Roy, S., Meunier, J., Cox, I.: Cylindrical rectification to minimize epipolar distortion. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 393–399. IEEE Press, Washington (1997)
Hartley, R.: Theory and practice of projective rectification. International Journal of Computer Vision 35, 115–127 (1999)
Ma, Y.Z., Liu, W.J.: A New Robust Rectification Algorithm of Uncalibrated Stereo Pairs. Computer Engineering 32, 26–28 (2006)
Zhang, Z.: Determining the Epipolar Geometry and Its Uncertainty: A Review. International Journal of Computer Vision 27, 161–198 (1998)
Niu, B., Xue, B., Li, L.: Symbiotic Multi-swarm PSO for Portfolio Optimization. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS (LNAI), vol. 5755, pp. 776–784. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gao, H., Niu, B., Li, B., Yu, Y. (2010). An Improved Image Rectification Algorithm Based on Particle Swarm Optimization. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_73
Download citation
DOI: https://doi.org/10.1007/978-3-642-14922-1_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14921-4
Online ISBN: 978-3-642-14922-1
eBook Packages: Computer ScienceComputer Science (R0)