Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topology Prediction of α-Helical and β-Barrel Transmembrane Proteins Using RBF Networks

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6215))

Included in the following conference series:

Abstract

Transmembrane proteins are difficult to crystallize owing to the presence of lipid environment and the number of membrane protein structures deposited in Protein Data Bank is limited. Hence, computational techniques become essential and powerful tools to aid biologists for understanding the structure and function of membrane proteins.

We propose an architecture for discriminating transmembrane α-helical proteins and transmembrane β-barrel proteins from genomic sequences, and then predict their transmembrane segments with Z-coordinate idea and RBF networks regression techniques.

In the discrimination of transmembrane proteins, our approach has correctly predicted the transmembrane proteins with a cross-validated accuracy of more than 98% in a set of 5888 proteins, which contain 424 α-helical proteins, 203 β-barrel proteins, and 5261 globular proteins. Also, our method showed a TM-segment recall of 97.3% in a independent set of 41 α-helical proteins. The improvement of TM-segment recall is more than 9% when comparing with other modern α-helix transmembrane segment predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hirokawa, T., Boon-Chieng, S., Mitaku, S.: SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379 (1998)

    Article  Google Scholar 

  2. Tusnady, G., Simon, I.: The HMMTOP transmembrane topology prediction server (2001)

    Google Scholar 

  3. Gromiha, M.M., Suwa, M.: A simple statistical method for discriminating outer membrane proteins with better accuracy. Bioinformatics 21, 961–968 (2005)

    Article  Google Scholar 

  4. Bagos, P., Liakopoulos, T., Spyropoulos, I., Hamodrakas, S.: A hidden markov model method, capable of predicting and discriminating beta-barrel outer membrane proteins. BMC Bioinformatics 5, 29 (2004)

    Article  Google Scholar 

  5. Gromiha, M.M., Suwa, M.: Discrimination of Outer Membrane Proteins Using Machine Learning Algorithms. PROTEINS: Structure, Function, and Bioinformatics 63, 1031–1037 (2006)

    Article  Google Scholar 

  6. Gromiha, M., Suwa, M.: Influence of amino acid properties for discriminating outer membrane proteins at better accuracy. BBA-Proteins and Proteomics 1764, 1493–1497 (2006)

    Article  Google Scholar 

  7. Ou, Y.Y., Gromiha, M., Chen, S.A., Suwa, M.: TMBETADISC-RBF: Discrimination of _-barrel membrane proteins using RBF networks and PSSM profiles. Computational Biology and Chemistry 32 (2008) 227–231

    Article  Google Scholar 

  8. Ou, Y.Y., Chen, S.A., Gromiha, M.M.: Prediction of membrane spanning segments and topology in beta-barrel membrane proteins at better accuracy. Journal of computational chemistry (2009)

    Google Scholar 

  9. Yang, Z., Thomson, R.: Bio-basis function neural network for prediction of protease cleavage sites in proteins. IEEE Transactions on Neural Networks 16, 263–274 (2005)

    Article  Google Scholar 

  10. Zhang, G., Huang, D.: Prediction of inter-residue contacts map based on genetic algorithm optimized radial basis function neural network and binary input encoding scheme. Journal of Computer-Aided Molecular Design 18, 797–810 (2004)

    Article  Google Scholar 

  11. Su, C.T., Chen, C.Y., Ou, Y.Y.: Protein disorder prediction by condensed PSSM considering propensity for order or disorder. BMC Bioinformatics 7, 319 (2006)

    Article  Google Scholar 

  12. Ou, Y.Y.: QuickRBF: a library for radial basis function networks, Software available at http://csie.org/~yien/quickrbf/

  13. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  Google Scholar 

  14. Xie, D., Li, A., Wang, M., Fan, Z., Feng, H.: LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Research 33, W105–W110 (2005)

    Article  Google Scholar 

  15. Granseth, E., Viklund, H., Elofsson, A.: ZPRED: Predicting the distance to the membrane center for residues in alpha-helical membrane proteins. Bioinformatics 22, e191–e196 (2006)

    Google Scholar 

  16. Tusnády, G., Dosztányi, Z., Simon, I.: PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Research 33, D275–D278 (2005)

    Google Scholar 

  17. Li, W., Jaroszewski, L., Godzik, A.: Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282–283 (2001)

    Article  Google Scholar 

  18. Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)

    Article  Google Scholar 

  19. Chandonia, J., Hon, G., Walker, N., Conte, L., Koehl, P., Levitt, M., Brenner, S., Journals, O.: The ASTRAL Compendium in 2004. Nucl. Acids Res. 32, D189–D192 (2004)

    Google Scholar 

  20. Zemla, A., Venclovas, C., Fidelis, K., Rost, B.: A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins 34, 220–223 (1999)

    Article  Google Scholar 

  21. Bigelow, H., Rost, B.: PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins. Nucleic Acids Research 34, W186 (2006)

    Google Scholar 

  22. Bagos, P., Liakopoulos, T., Spyropoulos, I., Hamodrakas, S.: PRED-TMBB: a web server for predicting the topology of β-barrel outer membrane proteins. Nucleic acids research 32, 400 (2004)

    Article  Google Scholar 

  23. Randall, A., Cheng, J., Sweredoski, M., Baldi, P.: TMBpro: secondary structure, β-contact and tertiary structure prediction of transmembrane β-barrel proteins. Bioinformatics 24, 513 (2008)

    Article  Google Scholar 

  24. Lo, A., Chiu, H., Sung, T., Lyu, P., Hsu, W.: Enhanced membrane protein topology prediction using a hierarchical classification method and a new scoring function. Journal of Proteome Research 7, 487–496 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, SA., Ou, YY., Gromiha, M.M. (2010). Topology Prediction of α-Helical and β-Barrel Transmembrane Proteins Using RBF Networks. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14922-1_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14921-4

  • Online ISBN: 978-3-642-14922-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics