Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Computational Method for Predicting Disease Genes Based on Functional Similarity

  • Conference paper
Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6216))

Included in the following conference series:

  • 2229 Accesses

Abstract

Identifying disease genes is essential for elucidating pathogenesis and developing diagnosis and prevention measures. We have developed a computational tool, named DGFinder, to assess candidate genes in interested chromosome regions for their possibility relating to a given disease. DGFinder prioritizes the candidate genes based on a new approach to measure the functional similarity to the known causative genes of the disease. The performance of DGFinder was evaluated with a dataset containing 1045 genes related to 305 diseases. The validation results showed that 16.1% and 56.7% of disease-associated genes were at the top 1 and top 5 of the list prioritized by DGFinder. Therefore, DGFinder can effectively help the selection of candidate genes in interested chromosome regions for mutation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Nature, 860–921 (2001)

    Google Scholar 

  2. Venter, J.C., et al.: The sequence of the human genome. Science, 1304–1351 (2001)

    Google Scholar 

  3. Risch, N.J.: Searching for genetic determinants in the new millennium. Nature, 847–856 (2000)

    Google Scholar 

  4. Lopez-Bigas, N., Ouzounis, C.A.: Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res., 3108–3114 (2004)

    Google Scholar 

  5. Adie, E.A., et al.: Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinformatics (2005)

    Google Scholar 

  6. Kondrashov, F.A., Ogurtsov, A.Y., Kondrashov, A.S.: Bioinformatical assay of human gene morbidity. Nucleic Acids Res, 1731-1737 (2004)

    Google Scholar 

  7. Freudenberg, J., Propping, P.: A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics (2002)

    Google Scholar 

  8. Perez-Iratxeta, C., Bork, P., Andrade, M.A.: Association of genes to genetically inherited diseases using data mining. Nat. Genet., 316–319 (2002)

    Google Scholar 

  9. Perez-Iratxeta, C., Bork, P., Andrade-Navarro, M.A.: Update of the G2D tool for prioritization of gene candidates to inherited diseases. Nucleic Acids Res. (2007)

    Google Scholar 

  10. Perez-Iratxeta, C., et al.: G2D: a tool for mining genes associated with disease. BMC Genet. (2005)

    Google Scholar 

  11. Turner, F.S., Clutterbuck, D.R., Semple, C.A.: POCUS: mining genomic sequence annotation to predict disease genes. Genome Biol. (2003)

    Google Scholar 

  12. van Driel, M.A., et al.: A new web-based data mining tool for the identification of candidate genes for human genetic disorders. Eur. J. Hum. Genet., 57–63 (2003)

    Google Scholar 

  13. van Driel, M.A., et al.: GeneSeeker: extraction and integration of human disease-related information from web-based genetic databases. Nucleic Acids Res. (2005)

    Google Scholar 

  14. Xu, J., Li, Y.: Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics, 2800–2805 (2006)

    Google Scholar 

  15. Oti, M., et al.: Predicting disease genes using protein-protein interactions. J. Med. Genet. 43(8), 691–698 (2006)

    Article  Google Scholar 

  16. George, R.A., et al.: Analysis of protein sequence and interaction data for candidate disease gene prediction. Nucleic Acids Res. (2006)

    Google Scholar 

  17. Adie, E.A., et al.: SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics, 773–774 (2006)

    Google Scholar 

  18. Aerts, S., et al.: Gene prioritization through genomic data fusion. Nat. Biotechnol., 537–544 (2006)

    Google Scholar 

  19. Franke, L., et al.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet., 1011–1025 (2006)

    Google Scholar 

  20. Calvo, B., et al.: A partially supervised classification approach to dominant and recessive human disease gene prediction. Comput. Methods Programs Biomed., 229–237 (2007)

    Google Scholar 

  21. Huang, Q.Y., Li, G.H.Y., Cheung, W.M.W., et al.: Prediction of osteoporosis candidate genes by computational disease-gene identification strategy. J. Hum. Genet., 644–655 (2008)

    Google Scholar 

  22. Jimenez, G., Childs, B., Valle, D.: Human disease genes. Nature, 853–855 (2001)

    Google Scholar 

  23. Badano, J.L., Katsanis, N.: Beyond Mendel: an evolving view of human genetic disease transmission. Nat. Rev. Genet., 779–789 (2002)

    Google Scholar 

  24. Goh, K.I., et al.: The human disease network. Proc. Natl. Acad. Sci. USA, 8685–8690 (2007)

    Google Scholar 

  25. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25–29 (2000)

    Google Scholar 

  26. Botstein, D., Risch, N.: Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat. Genet., 228–237 (2003)

    Google Scholar 

  27. Weller, S., Gould, S.J., Valle, D.: Peroxisome biogenesis disorders. Annu. Rev. Genomics Hum. Genet., 165–211 (2003)

    Google Scholar 

  28. Laakso, M., Kubaszek, A.: Candidate genes for insulin resistance: what’s new? International Congress Series, 55–61 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, F., Wang, R., Guan, M., He, G. (2010). A Novel Computational Method for Predicting Disease Genes Based on Functional Similarity. In: Huang, DS., Zhang, X., Reyes García, C.A., Zhang, L. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2010. Lecture Notes in Computer Science(), vol 6216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14932-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14932-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14931-3

  • Online ISBN: 978-3-642-14932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics