Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6216))

Included in the following conference series:

  • 2238 Accesses

Abstract

Intelligent solutions, based on artificial intelligence (AI) technologies, to solve complicated practical problems in various sectors are becoming more and more widespread nowadays. On the other hand, electrical load prediction is one of the important concerns of power systems so development of intelligent prediction tools for performing accurate predictions is essential. This study presents an intelligent hybrid approach called ACO-SA by hybridization of Ant Colony Optimization (ACO) and Simulated Annealing (SA). The hybrid approach consists of two general stages. At the first stage time series inputs will be fed into ACO and it performs a global search to find a globally optimum solution. At the second stage, ACO’s outcome will be fed into SA as initial solution and then SA starts local search around the ACO’s global optimum and performs the tuning process on the initial solution. The superiority and applicability of the ACO-SA approach is shown for Iranian monthly load prediction problem and outcomes of the hybrid method are compared with Single ACO, Single SA and ANN technique (which is a common technique in the field of load prediction). Results show that ACO-SA approach outperforms rest of the methods regarding to prediction accuracy, so it can be considered as a promising alternative for load prediction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hisham Choueiki, M., Mount-Campbell Clark, A., Ahalt Stanley, C.: Implementing a Weighted Least Squares Procedure in Training a Neural Network to Solve the Short-term Load Forecasting Problem. IEEE Trans. PWRS, 1689–1694 (1997)

    Google Scholar 

  2. Hisham Choueiki, M., Mount-Campbell Clark, A., Ahalt Stanley, C.: Building a ‘quasi optimal’ Neural Network to Solve the Short-term Load Forecasting Problem. IEEE Trans. PWRS, 1432–1439 (1997)

    Google Scholar 

  3. Konar, A.: Computational Intelligence: Principles, techniques. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen, J., Kolehmainen, M.: Evolving the Neural Network Model for Forecasting Air pollution time series. Engineering Applications of Artificial Intelligence 17(2), 159–167 (2004)

    Article  Google Scholar 

  5. Hanias, M.P., Karras, D.A.: On Efficient Multistep Non-linear Time Series Prediction in Chaotic Diode Resonator Circuits by Optimizing the Combination of Non-linear Time Series Analysis and Neural Networks. Engineering Applications of Artificial Intelligence 22(1), 32–39 (2009)

    Article  Google Scholar 

  6. Faruk, D.: A Hybrid Neural Network and ARIMA Model for Water Quality Time Series Prediction. Engineering Applications of Artificial Intelligence (2009)

    Google Scholar 

  7. Esmaeil, H., Shavandi, H., Arash, G.: Integration of Genetic Fuzzy Systems and Artificial Neural Networks for Stock Price Forecasting. Knowl.Based Syst. (2010) doi:10.1016/j.knosys.2010.05.004

    Google Scholar 

  8. Ghanbari, A., Naghavi, A., Ghaderi, S.F.: Artificial Neural Networks and Regression Approaches Comparison for Forecasting Iran’s Annual Electricity Load. In: IEEE Second International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, pp.675–679 (2009)

    Google Scholar 

  9. Darbellay, G., Slama, M.: Forecasting the Short-term Demand for Electricity Do neural Networks Stand a Better Chance? International Journal of Forecasting 16, 71–83 (2000)

    Article  Google Scholar 

  10. Abraham, A., Nath, B.: A Neuro-fuzzy Approach for Modeling Electricity Demand in Victoria. Applied Soft Computing 1, 127–138 (2001)

    Article  Google Scholar 

  11. Lopes, M., Minussi, C., Lotufo, A.: Electric Load Forecasting Using a Fuzzy ART&ARTMAP Neural Network. Applied Soft Computing 5, 235–244 (2005)

    Article  Google Scholar 

  12. Topalli, A., Erkmen, I., Topalli, I.: Intelligent Short-term Load Forecasting in Turkey. Electrical Power and Energy Systems 28, 437–447 (2006)

    Article  Google Scholar 

  13. Ying, L.-C., Pan, M.-C.: Using Adaptive Network Based Fuzzy Inference System to Forecast Regional Electricity Loads. Energy Conversion and Management 49, 205–211 (2008)

    Article  Google Scholar 

  14. Pao, H.-T.: Comparing Linear and Nonlinear Forecasts for Taiwan’s Electricity Consumption. Energy 31, 2129–2141 (2006)

    Article  Google Scholar 

  15. Hamzacebi, C.: Forecasting of Turkey’s Net Electricity Energy Consumption on Sectoral Bases. Energy Policy 35, 2009–2016 (2007)

    Article  Google Scholar 

  16. Toksarı, M.D.: Ant Colony Optimization for Finding the Global Minimum. Applied Mathematics and Computation 176, 308–316 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Azadeh, A., Tarverdian, S.: Integration of Genetic Algorithm, Computer Simulation and Design of Experiments for Forecasting Electrical Energy Consumption. Energy Policy 35(10), 5229–5241 (2007)

    Article  Google Scholar 

  18. Palm, R.: Multiple-step-ahead Prediction in Control Systems with Gaussian Process Models and TS-fuzzy Models. Engineering Applications of Artificial Intelligence 20(8), 1023–1035 (2007)

    Article  Google Scholar 

  19. Jamali, A., Nariman-zadeh, N., Darvizeh, A., Masoumi, A., Hamrang, S.: Multi-objective Evolutionary Optimization of Polynomial Neural Networks for Modelling and Prediction of Explosive Cutting Process. Engineering Applications of Artificial Intelligence 22(4-5), 676–687 (2009)

    Article  Google Scholar 

  20. Zanaganeh, M., Mousavi, S., Shahidi, A.: A Hybrid Genetic Algorithm–adaptive Network-based Fuzzy Inference System in Prediction of Wave Parameters. Engineering Applications of Artificial Intelligence 22(8), 1194–1202 (2009)

    Article  Google Scholar 

  21. Dorigo, M.: Optimization, Learning and Natural Algorithms, Ph.D. Thesis. politecnico di milano, Italy (1992)

    Google Scholar 

  22. Dorigo, M., Di Caro, G.: Ant Colony Optimization: a new meta-heuristic. In: Proceeding of the 1999 Congress on Evolutionary Computation, pp. 1470–1477 (1999)

    Google Scholar 

  23. Toksarı, M.D.: Ant Colony Optimization to Estimate Energy Demand of Turkey. Energy Policy 35, 3984–3990 (2007)

    Article  Google Scholar 

  24. Toksarı, M.: Estimating the net electricity energy generation and demand using the ant colony optimization approach: Case of Turkey. Energy Policy 37, 1181–1187 (2009)

    Google Scholar 

  25. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculation by Fast Computing Machines. J. of Chem. Phys. 21, 1087–1091 (1953)

    Article  Google Scholar 

  26. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  27. Chang, P.-C., Liu, C.-H.: A TSK Type Fuzzy Rule Based System for Stock Price Prediction. Expert Systems with Applications 34, 135–144 (2008)

    Article  Google Scholar 

  28. Jolai, F., Ghanbari, A.: Integrating Data Transformation Techniques with Hopfield Neural Networks for Solving Travelling Salesman Problem. Expert Systems with Applications solving travelling salesman problem (2010)

    Google Scholar 

  29. Azadeh, A., Asadzadeh, S., Ghanbari, A.: An Adaptive Network-based Fuzzy in Ference System Forshort-termnatural Gas Demand estimation: Uncertain and Complex environments. Energy Policy 38, 1529–1536 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghanbari, A., Hadavandi, E., Abbasian-Naghneh, S. (2010). An Intelligent ACO-SA Approach for Short Term Electricity Load Prediction. In: Huang, DS., Zhang, X., Reyes García, C.A., Zhang, L. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2010. Lecture Notes in Computer Science(), vol 6216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14932-0_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14932-0_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14931-3

  • Online ISBN: 978-3-642-14932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics