Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Proof-Theoretic Analysis of Rationality for Strategic Games with Arbitrary Strategy Sets

  • Conference paper
Computational Logic in Multi-Agent Systems (CLIMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6245))

Included in the following conference series:

  • 316 Accesses

Abstract

In the context of strategic games, we provide an axiomatic proof of the statement

(Imp):

Common knowledge of rationality implies that the players will choose only strategies that survive the iterated elimination of strictly dominated strategies.

Rationality here means playing only strategies one believes to be best responses. This involves looking at two formal languages. One, \(\mathcal{L}_O\), is first-order, and is used to formalise optimality conditions, like avoiding strictly dominated strategies, or playing a best response. The other, \(\mathcal{L}_\nu\), is a modal fixpoint language with expressions for optimality, rationality and belief. Fixpoints are used to form expressions for common belief and for iterated elimination of non-optimal strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apt, K.R.: Relative strength of strategy elimination procedures. Economics Bulletin 3(21), 1–9 (2007), http://economicsbulletin.vanderbilt.edu/Abstract.asp?PaperID=EB-07C70015

    Google Scholar 

  2. Apt, K.R.: The many faces of rationalizability. Berkeley Electronic Journal of Theoretical Economics 7(1), 38 pages (2007)

    MathSciNet  Google Scholar 

  3. Aumann, R.J., Brandenburger, A.: Epistemic conditions for nash equilibrium. Econometrica 63(5), 1161–1180 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Battigalli, P., Bonanno, G.: Recent results on belief, knowledge and the epistemic foundations of game theory. Research in Economics 53, 149–225 (1999)

    Article  Google Scholar 

  5. Benthem, J.v.: Rational dynamics and epistemic logic in games. International Game Theory Review 9(1), 13–45 (2007) (Erratum reprint, 9(2), 377–409)

    Google Scholar 

  6. Bernheim, B.D.: Rationalizable strategic behavior. Econometrica 52, 1007–1028 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruin, B.d.: Explaining Games: On the logic of game theoretic explanations. PhD thesis, ILLC, Amsterdam (2004)

    Google Scholar 

  8. Dawar, A., Grädel, E., Kreutzer, S.: Inflationary fixed points in modal logics. ACM Transactions on Computational Logic, TOCL 5(2), 282–315 (2004)

    Article  Google Scholar 

  9. Fagin, R., Halpern, J.Y., Vardi, M., Moses, Y.: Reasoning about knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Fine, K.: Propositional quantifiers in modal logic. Theoria 36, 336–346 (1970)

    Article  MathSciNet  Google Scholar 

  11. Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science 27(3), 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lipman, B.L.: A note on the implications of common knowledge of rationality. Games and Economic Behaviour 6, 114–129 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  14. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zvesper, J.A., Apt, K.R. (2010). Proof-Theoretic Analysis of Rationality for Strategic Games with Arbitrary Strategy Sets. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds) Computational Logic in Multi-Agent Systems. CLIMA 2010. Lecture Notes in Computer Science(), vol 6245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14977-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14977-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14976-4

  • Online ISBN: 978-3-642-14977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics