Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 80))

Abstract

The objective of the presented study is to show that it is possible to effectively separate harmonic sounds from musical sound mixtures for the purpose of automatic sounds recognition, without any prior knowledge of the mixed instruments. It has also been shown that a properly trained ANN enables to reliably validate separation results of mixed musical instrument sounds, and the validation corresponds with subjective perception of the separated sounds quality. A comparison between the results obtained with the use of the ANN-based recognition, subjective evaluation of the separation performance and the energy-based evaluation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dziubiński, M., Dalka, P., Kostek, B.: Estimation of Musical Sound Separation Algorithm Effectiveness Employing Neural Networks. J. Intel. Inform. Systems 24(2), 133–157 (2005)

    Article  Google Scholar 

  2. Dziubiński, M., Kostek, B.: Octave Error Immune and Instantaneous Pitch Detection Algorithm. J. New Music Research 34, 273–292 (2005)

    Article  Google Scholar 

  3. Dziubiński, M.: Musical Instrument Sound Separation Methods Supported by Artificial Neural Network Decision System, Ph.D. thesis, MSD, GUT (2006)

    Google Scholar 

  4. Gillet, O., Richard, G.: Transcription and separation of drum signals from polyphonic music. IEEE Transactions on Audio, Speech and Language Processing 16, 529–540 (2008)

    Article  Google Scholar 

  5. http://ismir2009.ismir.net (Intern. Conference on Music Information Retrieval website)

  6. Klapuri, A.: Multipitch analysis of polyphonic music and speech signals using an auditory model. IEEE Trans. Audio, Speech and Language Processing 16(2), 255–266 (2008)

    Article  Google Scholar 

  7. Klapuri, A.: Multipitch estimation and sound separation by the spectral smoothness principle. In: Proc. IEEE ICASSP 2001, Salt Lake City, USA, pp. 3381–3384 (2001)

    Google Scholar 

  8. Kostek, B.: Perception-Based Data Processing in Acoustics. Springer, Berlin (2005)

    Google Scholar 

  9. Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for their Automatic Classification. J. Audio Eng. Soc. 49, 768–785 (2001)

    Google Scholar 

  10. Kostek, B.: Applying computational intelligence to musical acoustics. Archives of Acoustics 32(3), 617–629 (2007)

    Google Scholar 

  11. Quatieri, T.F., McAulay, R.J.: Magnitude-only reconstruction using a sinusoidal speech model. In: Proc. IEEE ICASSP 1984, vol. 2, pp. 27.6.1–27.6.4 (1984)

    Google Scholar 

  12. Tzanetakis, G.: Signal Processing Methods for Music Transcription Computer Music J., 32(4), 86-88 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dziubiński, M., Kostek, B. (2010). Evaluation of the Separation Algorithm Performance Employing ANNs. In: Nguyen, N.T., Zgrzywa, A., Czyżewski, A. (eds) Advances in Multimedia and Network Information System Technologies. Advances in Intelligent and Soft Computing, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14989-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14989-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14988-7

  • Online ISBN: 978-3-642-14989-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics