Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simplification of Jacobi Sets

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The Jacobi set of two Morse functions defined on a 2-manifold is the collection of points where the gradients of the functions align with each other or where one of the gradients vanish. It describes the relationship between functions defined on the same domain, and hence plays an important role in multi-field visualization. The Jacobi set of twopiecewise linear functions may contain several components indicative of noisy or a feature-rich dataset. We pose the problem of simplification as the extraction oflevel sets and offset contours and describe an algorithm to compute and simplify Jacobi sets in a robust manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Bennett, V. Pascucci, and K. Joy. Genus oblivious cross parameterization: Robust topological management of inter-surface maps. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, pages 238–247, Washington, DC, USA, 2007. IEEE Computer Society.

    Google Scholar 

  2. P-T Bremer, E. M. Bringa, M. A. Duchaineau, A. G. Gyulassy, D. Laney, A. Mascarenhas, and V. Pascucci. Topological feature extraction and tracking. Journal of Physics: Conference Series, 78:012007 (5pp), 2007.

    Google Scholar 

  3. T. Echekki and J. H. Chen. Direct numerical simulation of auto-ignition in inhomogeneous hydrogen-air mixtures. In Proceedings of the 2nd Joint Meeting U.S. Sections Combustion Institute, 2001.

    Google Scholar 

  4. H. Edelsbrunner and J. Harer. Jacobi set of multiple morse funtions. In Foundations of Computational Mathematics, Minneapolis, 2002, pages 37–57. Cambridge Univ. Press, 2004.

    Google Scholar 

  5. H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Local and global comparison of continuous functions. In Proceedings of the conference on Visualization ’04, pages 275–280, Washington, DC, USA, 2004. IEEE Computer Society.

    Google Scholar 

  6. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, page 454, Washington, DC, USA, 2000. IEEE Computer Society.

    Google Scholar 

  7. M. Kreveld, R. Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface traversal. In Proceedings of the thirteenth annual symposium on Computational geometry, pages 212–220, New York, NY, USA, 1997. ACM.

    Google Scholar 

  8. Y. Matsumoto. Introduction to Morse Theory. Translated from Japanese by K. Hudson and M. Saito. Amer. Math. Soc., 2002.

    Google Scholar 

  9. M. Meyer, M. Desbrun, P. schroder, and A. Barr. Discrete differential geometry operators for triangulated 2-manifolds. VisMath., 2002.

    Google Scholar 

  10. G. Reeb. Sur les points singuliers d’une forme de pfaff complèment intégrable ou d’une fonction numérique. Computes Rendus de L’Académie des Séances, 222:847–849, 1946.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthambhara N .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

N, S., Natarajan, V. (2011). Simplification of Jacobi Sets. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_8

Download citation

Publish with us

Policies and ethics