Abstract
The Jacobi set of two Morse functions defined on a 2-manifold is the collection of points where the gradients of the functions align with each other or where one of the gradients vanish. It describes the relationship between functions defined on the same domain, and hence plays an important role in multi-field visualization. The Jacobi set of twopiecewise linear functions may contain several components indicative of noisy or a feature-rich dataset. We pose the problem of simplification as the extraction oflevel sets and offset contours and describe an algorithm to compute and simplify Jacobi sets in a robust manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Bennett, V. Pascucci, and K. Joy. Genus oblivious cross parameterization: Robust topological management of inter-surface maps. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, pages 238–247, Washington, DC, USA, 2007. IEEE Computer Society.
P-T Bremer, E. M. Bringa, M. A. Duchaineau, A. G. Gyulassy, D. Laney, A. Mascarenhas, and V. Pascucci. Topological feature extraction and tracking. Journal of Physics: Conference Series, 78:012007 (5pp), 2007.
T. Echekki and J. H. Chen. Direct numerical simulation of auto-ignition in inhomogeneous hydrogen-air mixtures. In Proceedings of the 2nd Joint Meeting U.S. Sections Combustion Institute, 2001.
H. Edelsbrunner and J. Harer. Jacobi set of multiple morse funtions. In Foundations of Computational Mathematics, Minneapolis, 2002, pages 37–57. Cambridge Univ. Press, 2004.
H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Local and global comparison of continuous functions. In Proceedings of the conference on Visualization ’04, pages 275–280, Washington, DC, USA, 2004. IEEE Computer Society.
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, page 454, Washington, DC, USA, 2000. IEEE Computer Society.
M. Kreveld, R. Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface traversal. In Proceedings of the thirteenth annual symposium on Computational geometry, pages 212–220, New York, NY, USA, 1997. ACM.
Y. Matsumoto. Introduction to Morse Theory. Translated from Japanese by K. Hudson and M. Saito. Amer. Math. Soc., 2002.
M. Meyer, M. Desbrun, P. schroder, and A. Barr. Discrete differential geometry operators for triangulated 2-manifolds. VisMath., 2002.
G. Reeb. Sur les points singuliers d’une forme de pfaff complèment intégrable ou d’une fonction numérique. Computes Rendus de L’Académie des Séances, 222:847–849, 1946.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer Berlin Heidelberg
About this chapter
Cite this chapter
N, S., Natarajan, V. (2011). Simplification of Jacobi Sets. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds) Topological Methods in Data Analysis and Visualization. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15014-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-15014-2_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15013-5
Online ISBN: 978-3-642-15014-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)