Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distributed Deliberative Recommender Systems

  • Conference paper
Transactions on Computational Collective Intelligence I

Abstract

Case-Based Reasoning (CBR) is one of most successful applied AI technologies of recent years. Although many CBR systems reason locally on a previous experience base to solve new problems, in this paper we focus on distributed retrieval processes working on a network of collaborating CBR systems. In such systems, each node in a network of CBR agents collaborates, arguments and counterarguments its local results with other nodes to improve the performance of the system’s global response. We describe D2ISCO: a framework to design and implement deliberative and collaborative CBR systems that is integrated as a part of jcolibritwo an established framework in the CBR community. We apply D2ISCO to one particular simplified type of CBR systems: recommender systems. We perform a first case study for a collaborative music recommender system and present the results of an experiment of the accuracy of the system results using a fuzzy version of the argumentation system AMAL and a network topology based on a social network. Besides individual recommendation we also discuss how D2ISCO can be used to improve recommendations to groups and we present a second case of study based on the movie recommendation domain with heterogeneous groups according to the group personality composition and a group topology based on a social network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leake, D.B., et al.: Case-based reasoning: Experiences, lessons, and future directions. AAAI Press/MIT Press, Menlo Park (1996)

    Google Scholar 

  2. Plaza, E., McGinty, L.: Distributed case-based reasoning. Knowledge Eng. Review 20(3), 261–265 (2005)

    Article  Google Scholar 

  3. McGinty, L., Smyth, B.: Collaborative case-based reasoning: Applications in personalised route planning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 362–376. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Ontañón, S., Plaza, E.: Arguments and counterexamples in case-based joint deliberation. In: Maudet, N., Parsons, S., Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 36–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Díaz-Agudo, B., González-Calero, P.A., Recio-García, J.A., Sánchez-Ruiz-Granados, A.A.: Building cbr systems with jcolibri. Sci. Comput. Program. 69(1-3), 68–75 (2007)

    Article  MATH  Google Scholar 

  6. Díaz-Agudo, B., González-Calero, P.A., Recio-García, J.A., Sánchez, A.: Building cbr systems with jcolibri. Special Issue on Experimental Software and Toolkits of the Journal Science of Computer Programming 69(1-3), 68–75 (2007)

    MATH  Google Scholar 

  7. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowledge Engineering Review 20(3), 315–320 (2006)

    Article  Google Scholar 

  8. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications. IEEE Communications Surveys and Tutorials 3(4), 2–16 (2000)

    Article  Google Scholar 

  9. Golbeck, J., Hendler, J.A.: Inferring binary trust relationships in web-based social networks. ACM Trans. Internet Techn. 6(4), 497–529 (2006)

    Article  Google Scholar 

  10. McDonald, D.W.: Recommending collaboration with social networks: a comparative evaluation. In: CHI ’03: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 593–600. ACM, New York (2003)

    Google Scholar 

  11. Golbeck, J.: Generating predictive movie recommendations from trust in social networks. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 93–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Ziegler, C.N., Golbeck, J.: Investigating interactions of trust and interest similarity. Decision Support Systems 43(2), 460–475 (2007)

    Article  Google Scholar 

  13. Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. González-Sanz, S., Recio-García, J.A., Díaz-Agudo, B.: D\(^{\mbox{2}}\)ISCO: Distributed Deliberative CBR Systems with jCOLIBRI. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 321–332. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Ontañón, S., Plaza, E.: An argumentation-based framework for deliberation in multi-agent systems. In: Rahwan, I., Parsons, S., Reed, C. (eds.) Argumentation in Multi-Agent Systems. LNCS (LNAI), vol. 4946, pp. 178–196. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Zimmermann, H.J.: Fuzzy set theory—and its applications, 3rd edn. Kluwer Academic Publishers, Norwell (1996)

    MATH  Google Scholar 

  17. Recio-García, J.A., Jimenez-Diaz, G., Sánchez-Ruiz-Granados, A.A., Díaz-Agudo, B.: Personality aware recommendations to groups. In: Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, pp. 325–328. ACM, New York (2009)

    Chapter  Google Scholar 

  18. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  19. Thomas, K., Kilmann, R.: Thomas-Kilmann Conflict Mode Instrument, Tuxedo, N.Y. (1974)

    Google Scholar 

  20. Masthoff, J., Gatt, A.: In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems. User Modeling and User-Adapted Interaction 16(3-4), 281–319 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Recio-García, J.A., Díaz-Agudo, B., González-Sanz, S., Sanchez, L.Q. (2010). Distributed Deliberative Recommender Systems. In: Nguyen, N.T., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence I. Lecture Notes in Computer Science, vol 6220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15034-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15034-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15033-3

  • Online ISBN: 978-3-642-15034-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics