Abstract
The problem of finding a satisfying assignment for a 2-SAT formula that minimizes the number of variables that are set to 1 (min ones 2–sat) is NP-complete. It generalizes the well-studied problem of finding the smallest vertex cover of a graph, which can be modeled using a 2-SAT formula with no negative literals. The natural parameterized version of the problem asks for a satisfying assignment of weight at most k.
In this paper, we present a polynomial-time reduction from min ones 2–sat to vertex cover without increasing the parameter and ensuring that the number of vertices in the reduced instance is equal to the number of variables of the input formula. Consequently, we conclude that this problem also has a simple 2-approximation algorithm and a 2k variables kernel subsuming these results known earlier. Further, the problem admits algorithms for the parameterized and optimization versions whose runtimes will always match the runtimes of the best-known algorithms for the corresponding versions of vertex cover.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abu-Khzam, F.N.: Kernelization algorithms for d-hitting set problems. In: Dehne, F.K.H.A., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 434–445. Springer, Heidelberg (2007)
Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, algorithms and applications. Springer Publishing Company, Heidelberg (2008) (incorporated)
Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 238–249. Springer, Heidelberg (2006)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. MIT Press, Cambridge (2001)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (November 1999)
Dahllöf, V., Jonsson, P.: An algorithm for counting maximum weighted independent sets and its applications. In: SODA, pp. 292–298 (2002)
Gusfield, D., Pitt, L.: A bounded approximation for the minimum cost 2-sat problem. Algorithmica 8, 103–117 (1992)
Hochbaum, D., Meggido, N., Naor, J., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Mathematical Programming 62, 69–83 (1993)
Hochbaum, D.S. (ed.): Approximation algorithms for NP-hard problems. PWS Publishing Co., Boston (1997)
Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm. In: Kannan, R., Kumar, N. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2009), Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol. 4, pp. 287–298. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2009)
Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–275. Springer, Heidelberg (2009)
Kratsch, S., Wahlström, M.: Preprocessing of min ones problems: A dichotomy. In: 37th International Colloquium on Automata, Languages and Programming, ICALP (to appear 2010)
Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and maxcut. J. Algorithms 31(2), 335–354 (1999)
Niedermeier, R.: Invitation to fixed parameter algorithms (oxford lecture series in mathematics and its applications). Oxford University Press, USA (March 2006)
Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. J. Algorithms 47(2), 63–77 (2003)
Nemhauser, G.L., Trotter, L.E.: Vertex packings: Structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Misra, N., Narayanaswamy, N.S., Raman, V., Shankar, B.S. (2010). Solving minones-2-sat as Fast as vertex cover . In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-15155-2_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15154-5
Online ISBN: 978-3-642-15155-2
eBook Packages: Computer ScienceComputer Science (R0)