Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mesh Deformation of Dynamic Smooth Manifolds with Surface Correspondences

  • Conference paper
Mathematical Foundations of Computer Science 2010 (MFCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6281))

Abstract

Maintaining a moving mesh of a deforming surface is widely studied in various disciplines. However, difficulties arise with requirements of topology changes, homeomorphism between mesh and surface, and guarantees of triangle quality. We propose a mesh deformation algorithm to satisfy the above requirements. We employ the skin surface by Edelsbrunner that approximates objects in fields like computer graphics, molecular modeling and engineering. We complete the general deformation framework by introducing a new mesh point movement and scheduling function to satisfy the requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bajaj, C., Blinn, J., Bloomenthal, J., Cani-Gascuel, M.-P., Rockwood, A., Wyvill, B., Wyvill, G.: Introduction to implicit surfaces. Morgan-Kaufmann, San Francisco (1997)

    MATH  Google Scholar 

  2. Bänsch, E., Morin, P., Nochetto, R.H.: A parametric finite element method for fourth order geometric evolution equations. Journal of Computational Physics 222, 441–467 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bertalmio, M., Sapiro, G., Randall, G.: Region tracking on level-sets methods. IEEE Transactions on Medical Imaging 18, 448–451 (1999)

    Article  Google Scholar 

  4. Chen, C., Cheng, H.-L.: Superimposing Voronoi complexes for shape deformation. Int. J. Comput. Geometry Appl. (2006)

    Google Scholar 

  5. Cheng, H.-L., Dey, T.K., Edelsbrunner, H., Sullivan, J.: Dynamic skin triangulation. Discrete Comput. Geom. (2001)

    Google Scholar 

  6. Cheng, H.-L., Edelsbrunner, H., Fu, P.: Shape space from deformation. Comput. Geom. Theory Appl., 191–204 (2001)

    Google Scholar 

  7. Cheng, H.-L., Shi, X.: Quality tetrahedral mesh. generation for macromolecules. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 203–212. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Cheng, H.-L., Shi, X.W.: Quality mesh generation for molecular skin surfaces using restricted union of balls. IEEE Visualization (2005)

    Google Scholar 

  9. Cheng, H.-L., Tan, T.: Approximating polyhedral objects with deformable smooth surfaces. Computational Geometry, Thoery and Applications 18, 104–117 (2008)

    MathSciNet  Google Scholar 

  10. Cheng, S.-W., Edelsbrunner, H., Fu, P., Lam, P.: Design and analysis of planar shape deformation. Comput. Geom. Theory Appl., 205–218 (2001)

    Google Scholar 

  11. Creighton, T.E.: Proteins structures and molecular principles. Freeman, New York (1984)

    Google Scholar 

  12. Edelsbrunner, H.: Deformable smooth surface design. Discrete Comput. Geom., 87–115 (1999)

    Google Scholar 

  13. Edelsbrunner, H., Ungor, A.: Relaxed scheduling in dynamic skin triangulation. In: Japanese Conf. Comput. Geom. (2002)

    Google Scholar 

  14. Karan, S.: Skinning characters using surface-oriented free-form deformations. In: Graphics Interface 2000, pp. 35–42 (2000)

    Google Scholar 

  15. Kruithof, N.G.H., Vegter, G.: Meshing skin surfaces with certified topology. Computational Geometry 36, 166–182 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Starck, J., Hilton, A.: Correspondence labelling for wide-timeframe free-form surface matching, pp. 1–8 (2007)

    Google Scholar 

  17. CGAL (version 3.5.1), http://www.cgal.org

  18. Wang, Y., Peterson, B., Staib, L.: Shape-based 3d surface correspondence using geodesics and local geometry. In: CVPR, pp. 2644–2651 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, HL., Yan, K. (2010). Mesh Deformation of Dynamic Smooth Manifolds with Surface Correspondences. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15155-2_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15154-5

  • Online ISBN: 978-3-642-15155-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics