Abstract
Under extreme light conditions, a conventional colour CCD camera would fail to render the colours of an object properly as the visible spectrum is either faintly observable in the scene or the presence of glare corrupts the colours sensed. On the other hand, for darkly-illuminated areas, a near-infrared (NIR) camera would sense stronger more discriminable signals, but could only render the scene monochromatically. The underlying challenge in this research is how to adaptively integrate a monochromatic NIR image with a faintly rendered colour image of the same darkly or very brightly lit scene to give rise to improved colour classification results that discriminate colours more effectively. This research proposes a Fuzzy-Genetic colour processing algorithm that adaptively marries together the visible and near-infrared spectra signals for the purpose of colour object recognition. The experiments were done on a scene with spatially varying illumination intensities, using Fujifilm’s UV/IR Super CCD camera with a sensitivity range between 380nm to 1000nm in conjunction with NIR filters. Results prove that the proposed multi-spectrum technique yields better colour classification results than utilizing the pure visible spectrum alone.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kong, S., Heo, J., Abidi, B., Paik, J., Abidi, M.: Recent advances in visual and infrared face recognition - a review. The Journal of Computer Vision and Image Understanding 97(1), 103–135 (2005)
Ebner, M.: Color Constancy. Wiley, Chichester (2007)
Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1552–1560 (2003)
Rauss, P.J., Daida, J.M., Chaudhary, S.: Classification of spectral imagery using genetic programming. In: Proc. GECCO, pp. 726–733 (2000)
Montoliu, R., Pla, F., Klaren, A.C.: Illumination intensity, object geometry and highlights invariance in multispectral imaging (2005)
Ghosh, P., Jayas, D.: Use of spectroscopic data for automation in food processing industry. Sensing and Instrumentation for Food Quality and Safety 3(1), 3–11 (2009)
Chao, K., Park, B., Chen, Y., Hruschka, W., Wheaton, F.: Design of a dual-camera system for poultry carcasses inspection. Appl. Eng. Agric. 16(5), 581–587 (2000)
Chen, Y.R., Chao, K., Kim, M.S.: Machine vision technology for agricultural applications. Computers and Electronics in Agriculture 36(2-3), 173–191 (2002)
Kleynen, O., Leemans, V., Destain, M.F.: Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering 69(1), 41–49 (2005)
ElMasry, G., Wang, N., Vigneault, C., Qiao, J., ElSayed, A.: Early detection of apple bruises on different background colors using hyperspectral imaging. LWT - Food Science and Technology 41(2), 337–345 (2008)
Kobayashi, H., Ogawa, M., Kosaka, N., Choyke, P., Urano, Y.: Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine 4, 411–419 (2009)
Kosaka, N., Ogawa, M., Longmire, M.R., Choyke, P.L., Kobayashi, H.: Multi-targeted multi-color in vivo optical imaging in a model of disseminated peritoneal ovarian cancer. Journal of Biomedical Optics 14 (2009)
Vilaseca, M., Pujol, J., Arjona, M., Martnez-Verd, F.M.: Color visualization system for near-infrared multispectral images. Journal of Imaging Science and Technology 49(3), 246–255 (2005)
Menesatti, P., Antonucci, F., Pallottino, F., Roccuzzo, G., Allegra, M., Stagno, F., Intrigliolo, F.: Estimation of plant nutritional status by vis-nir spectrophotometric analysis on orange leaves (citrus sinensis (l) osbeck cv tarocco). Biosystems Engineering 105(4), 448–454 (2010)
Mertens, K., Vaesen, I., Loffel, J., Kemps, B., Kamers, B., Perianu, C., Zoons, J., Darius, P., Decuypere, E., De Baerdemaeker, J., De Ketelaere, B.: The transmission color value: A novel egg quality measure for recording shell color used for monitoring the stress and health status of a brown layer flock. Poult. Sci. 89(3), 609–617 (2010)
Pap, K., Žiljak, I., Žiljak Vujić, J.: Image reproduction for near infrared spectrum and the infraredesign theory. Journal of Imaging Science and Technology 54(1), 010502 (2010)
Shin, H., Reyes, N.H.: Variable colour depth look-up table based on fuzzy colour processing. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 1071–1078. Springer, Heidelberg (2009)
Shin, H.: Finding near optimum colour classifiers: Genetic algorithm-assisted fuzzy colour contrast fusion using variable colour depth. Master’s thesis, Massey University (2009)
Reyes, N.H., Dadios, P.E.: Dynamic color object recognition using fuzzy logic. Journal of Advanced Computational Intelligence and Intelligent Informatics 8, 29–38 (2004)
Thomas, P., Stonier, R., Wolfs, P.: Robustness of color detection for robot soccer. In: Proceedings of the Seventh International Conference on Control, Automation, Robotics and Vision, pp. 1245–1249 (2002)
Shin, H., Reyes, N.: Finding near optimum colour classifiers: genetic algorithm-assisted fuzzy colour contrast fusion using variable colour depth. Memetic Computing Journal, 1–18 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shin, H., Reyes, N.H., Barczak, A.L., Chan, C.S. (2010). Colour Object Classification Using the Fusion of Visible and Near-Infrared Spectra. In: Zhang, BT., Orgun, M.A. (eds) PRICAI 2010: Trends in Artificial Intelligence. PRICAI 2010. Lecture Notes in Computer Science(), vol 6230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15246-7_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-15246-7_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15245-0
Online ISBN: 978-3-642-15246-7
eBook Packages: Computer ScienceComputer Science (R0)