Abstract
Proteins are dynamic molecules that exhibit a wide range of motions; often these conformational changes are important for protein function. Determining biologically relevant conformational changes, or true variability, efficiently is challenging due to the noise present in structure data. In this paper we present a novel approach to elucidate conformational variability in structures solved using X-ray crystallography. We first infer an ensemble to represent the experimental data and then formulate the identification of truly variable members of the ensemble (as opposed to those that vary only due to noise) as a sparse estimation problem. Our results indicate that the algorithm is able to accurately distinguish genuine conformational changes from variability due to noise. We validate our predictions for structures in the Protein Data Bank by comparing with NMR experiments, as well as on synthetic data. In addition to improved performance over existing methods, the algorithm is robust to the levels of noise present in real data. In the case of Ubc9, variability identified by the algorithm corresponds to functionally important residues implicated by mutagenesis experiments. Our algorithm is also general enough to be integrated into state-of-the-art software tools for structure-inference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, P., Grosse-Kunstleve, R., Hung, L., Loerger, T., McCoy, A., Moriarty, N., Read, R., Sacchettini, J., Sauter, N., Terwilliger, T.: Phenix:building new software for automated crystallographic structure determination. Acta Crystallographica (D) 58, 1948–1954 (2002)
Bourne, P., Weissig, H.: Structural Bioinformatics. Wiley-Liss, Inc., NJ (2003)
Cowtan, K.: Clipper Libraries, http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html
Delano, W.: The pymol molecular graphics system (2002), http://www.pymol.org
Bedem van den, H., Dhanik, A., Latombe, J., Deacon, A.: Modeling discrete heterogeneity in x-ray diffraction data by fitting multi-conformers. Acta Cryst. (D) D65, 1107–1117 (2009)
DePristo, M., de Bakker, P., Blundell, T.: Heterogeneity and inaccuracy in protein structures solved by x-ray crystallography. Structure 12, 831–838 (2004)
Drenth, J.: Principles of Protein x-ray crystallography. Springer, New York (1999)
Eissenmesser, E., Millet, O., Labeikovsky, W., Korzhnev, D., Wolf-Watz, M., Bosco, D., Skalicky, J., Kay, L., Kern, D.: Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005)
Furnham, N., Blundell, T., DePristo, M., Terwilliger, T.: Is one solution good enough. Nature Struct. and Mol. Biol. 13(3), 184–185 (2006)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Heidelberg (2009)
Jensen, L.: Methods in Enzymology, pp. 353–366 (1997)
Ji, H., Liu, S.: Analyzing ’omics data using hierarchical models. Nature Biotechnology 28, 337–340 (2010)
Kleywegt, G.: Validation of protein crystal structures. Acta Crystallographica (D) 56, 249–265 (2000)
Knight, J., Zhou, Z., Gallichio, E., Himmel, D., Friesner, R., Arnold, E., Levy, R.: Exploring structural variability in x-ray crystallographic models using protein local optimization by torsion angle sampling. Acta Crystallographica (D) 64, 383–396 (2008)
Knipscheer, P., van Dijk, W., Olsen, J., Mann, M., Sixma, T.: Noncovalent interaction between ubc9 and sumo promoted sumo chain formation. The EMBO Journal 26, 2797–2807 (2007)
Koshland, D.: Conformational changes: How small is big enough? Nature Medicine 4, 1112–1114 (1998)
Li, F., Yang, Y., Xing, E.: From lasso regression to feature vector machine. Neural Information Processing Systems (NIPS)Â 18 (2005)
Liu, Q., Yuan, Y., Shen, B., Chen, D., Chen, Y.: Conformational flexibility of a ubiquitin conjugation enzyme (e2). Biochemistry 38, 1415–1425 (1999)
Meinshausen, N., Rocha, B., Yu, B.: Discussion: A tale of three cousins: Lasso, l2boosting and dantzig. Annals of Statistics 35, 2373–2384 (2007)
Nigham, A., Hsu, D.: Protein conformational flexibility analysis with noisy data. Journal of Computational Biology 15, 813–828 (2008)
Ringe, G., Petsko, G.: Study of protein dynamics by x-ray diffraction. Methods in Enzymology 131, 389–433 (1986)
Singh, R., Berger, B.: Chaintweak: Sampling from the neighbourhood of a protein conformation. In: Pacific Symposium on Biocomputing, pp. 52–63 (2005)
Tatham, M., Kim, S., Yu, B., Jaffray, E., Song, J., Zheng, J., Rodriguez, M., Hay, R., Chen, Y.: Role of n-terminal site of ubc9 in sumo-1,-2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003)
Terwilliger, T., Grosse-Kunstleve, R., Afonine, P., Adams, P., Moriarty, N., Zwart, P., Read, R., Turk, D., Hung, L.W.: Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models. Acta Crystallographica (D) 63, 597–610 (2007)
Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Stat. Soc. Series B 58, 267–288 (1996)
Vitkup, D., Ringe, D., Karplus, M., Petsko, G.: Why proteins r-factors are so large: a self consistent analysis. Proteins 46, 345–354 (2002)
Volkman, B., Lipson, D., Wemmer, D., Kern, D.: Two state allosteric behaviour in a single domain signalling protein. Science 291, 2429–2433 (2001)
Wachter, A., Biegler, T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57 (2006)
Xu, H., Caramanis, C., Mannor, S.: Robust regression and lasso. Neural Information Processing Systems, NIPS (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hosur, R., Singh, R., Berger, B. (2010). Sparse Estimation for Structural Variability. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-15294-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15293-1
Online ISBN: 978-3-642-15294-8
eBook Packages: Computer ScienceComputer Science (R0)