Abstract
This paper explores the application of an artificial developmental system (ADS) to the field of evolutionary robotics by investigating the capability of a gene regulatory network (GRN) to specify a general purpose obstacle avoidance controller both in simulation and on a real robot. Experiments are carried out using the e-puck robot platform. It is further proposed to use cross-correlation between inputs and outputs in order to assess the quality of robot controllers more accurately than with observing its behaviour alone.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E., Smith, J.: Principles of development. Oxford University Press, Oxford (2002)
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)
De Jong, H.: Hybrid modeling and simulation of genetic regulatory networks: a qualitative approach. In: ERCIM News, pp. 267–282. Springer, Heidelberg (2003)
Astor, J.C.: A Developmental Model for the Evolution of Artificial Neural Networks: Design, Implementation and Evaluation. Artificial Life 6, 189–218 (1998)
Miller, J.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)
Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Fourth European Conference on Artificial Life, pp. 205–213. The MIT Press, Cambridge (1997)
Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Proc. of the Genetic and Evolutionary Computation Conf., Orlando, Florida, USA, pp. 35–43. Morgan Kaufmann, San Francisco (1999)
Hornby, G.: Generative representations for evolving families of designs. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 209–217. Springer, Heidelberg (2003)
Quick, T., Nehaniv, C.L., Dautenhahn, K., Roberts, G.: Evolving Embodied Genetic Regulatory Networks-driven Control Systems. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 266–277. Springer, Heidelberg (2003)
Floreano, D., Mondada, F.: Evolution of Homing Navigation in a Real Mobile Robot. IEEE Trans. on Systems, Man, and Cybernetics–Part B, 396–407 (1996)
Ziegler, J., Banzhaf, W.: Evolving Control Metabolisms for a Robot. Artificial Life 7, 171–190 (2001)
Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarmbots. IEEE Trans. Robot, 1115–1130 (2006)
Kumar, S.: A Developmental Genetics-inspired Approach to Robot Control. In: Proc. of the Workshops on Genetic and Evolutionary Computation (GECCO), pp. 304–309. ACM Press, New York (2005)
Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: A Model for Intrinsic Artificial Development Featuring Structural Feedback and Emergent Growth. In: Proc. of the IEEE Congress on Evolutionary Computation (CEC), Norway (2009)
Tarapore, D., Lungarella, M., Gomez, G.: Quantifying patterns of agent-environ-ment interaction. Robotics and {A}utonomous {S}ystems 54(2), 150–158 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M. (2010). Evolution and Analysis of a Robot Controller Based on a Gene Regulatory Network. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds) Evolvable Systems: From Biology to Hardware. ICES 2010. Lecture Notes in Computer Science, vol 6274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15323-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-15323-5_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15322-8
Online ISBN: 978-3-642-15323-5
eBook Packages: Computer ScienceComputer Science (R0)