Abstract
In this paper, we investigate whether a constant round Lasserre Semi-definite Programming (SDP) relaxation might give a good approximation to the Unique Games problem. We show that the answer is negative if the relaxation is insensitive to a sufficiently small perturbation of the constraints. Specifically, we construct an instance of Unique Games with k labels along with an approximate vector solution to t rounds of the Lasserre SDP relaxation. The SDP objective is at least 1 − ε whereas the integral optimum is at most γ, and all SDP constraints are satisfied up to an accuracy of δ> 0. Here ε, γ> 0 and t ∈ ℤ + are arbitrary constants and k = k(ε, γ) ∈ ℤ + . The accuracy parameter δ can be made sufficiently small independent of parameters ε, γ, t, k (but the size of the instance grows as δ gets smaller).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S., Bollobás, B., Lovász, L., Tourlakis, I.: Proving integrality gaps without knowing the linear program. Theory of Computing 2(1), 19–51 (2006)
Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut. J. AMS 21(1), 1–21 (2008)
Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: Proc. 36th ACM STOC, pp. 222–231 (2004)
Charikar, M., Makarychev, K., Makarychev, Y.: Near-optimal algorithms for unique games. In: Proc. 38th ACM STOC, pp. 205–214 (2006)
Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali-Adams relaxations. In: Proc. 41st ACM STOC, pp. 283–292 (2009)
Cheeger, J., Kleiner, B.: Generalized differentiation and bi-Lipschitz nonembedding in L1. Comptes Rendus Mathematique 343(5), 297–301 (2006)
Cheeger, J., Kleiner, B., Naor, A.: A (logn)Ω(1) integrality gap for the sparsest cut SDP. In: Proc. 50th IEEE FOCS (2009)
Dasgupta, S., Gupta, A.: An elementary proof of the johnson-lindenstrauss lemma. Tech. Rep. TR-99-006, U. C. Berkeley (1999)
Devanur, N., Khot, S., Saket, R., Vishnoi, N.: Integrality gaps for sparsest cut and minimum linear arrangement problems. In: Proc. 38th ACM STOC, pp. 537–546 (2006)
Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2 - o(1) for vertex cover SDPs in the Lovész-Schrijver hierarchy. In: Proc. 48th IEEE FOCS, pp. 702–712 (2007)
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)
Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: Proc. 44th IEEE FOCS (2003)
Gupta, A., Talwar, K.: Approximating unique games. In: SODA 2006: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (2006)
Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
Johnson, W., Lindenstrauss, J.: Extensions of lipschitz maps into a hilbert space. Contemporary Mathematics 26, 189–206 (1984)
Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. 34th ACM STOC, pp. 767–775 (2002)
Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)
Khot, S., Saket, R.: SDP integrality gaps with local ℓ1-embeddability. In: Proc. 50th IEEE FOCS (2009)
Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l1. In: Proc. 46th IEEE FOCS, pp. 53–62 (2005)
Krauthgamer, R., Rabani, Y.: Improved lower bounds for embeddings into l 1. In: ACM SODA, pp. 1010–1017 (2006)
Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer, Heidelberg (2001)
Lee, J.R., Naor, A.: l p metrics on the Heisenberg group and the Goemans-Linial conjecture. In: Proc. 47th IEEE FOCS, pp. 99–108 (2006)
Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low infuences invariance and optimality. In: Proc. 46th IEEE FOCS (2005)
Raghavendra, P., Steurer, D.: Integrality gaps for strong SDP relaxations of Unique Games. In: Proc. 50th IEEE FOCS (2009)
Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: Proc. 49th IEEE FOCS, pp. 593–602 (2008)
Schoenebeck, G., Trevisan, L., Tulsiani, M.: A linear round lower bound for Lovasz-Schrijver SDP relaxations of vertex cover. In: IEEE Conference on Computational Complexity, pp. 205–216 (2007)
Schoenebeck, G., Trevisan, L., Tulsiani, M.: Tight integrality gaps for Lovasz-Schrijver lp relaxations of vertex cover and max cut. In: Proc. 39th ACM STOC, pp. 302–310 (2007)
Trevisan, L.: Approximation algorithms for Unique Games. In: Proc. 46th IEEE FOCS (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Khot, S., Popat, P., Saket, R. (2010). Approximate Lasserre Integrality Gap for Unique Games. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-15369-3_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15368-6
Online ISBN: 978-3-642-15369-3
eBook Packages: Computer ScienceComputer Science (R0)