Abstract
We present a simple factor 6 algorithm for approximating the optimal multiplicative distortion of embedding (unweighted) graph metrics into tree metrics (thus improving and simplifying the factor 100 and 27 algorithms of Bǎdoiu et al. (2007) and Bǎdoiu et al. (2008)). We also present a constant factor algorithm for approximating the optimal distortion of embedding graph metrics into outerplanar metrics. For this, we introduce a notion of metric relaxed minor and show that if G contains an α-metric relaxed H-minor, then the distortion of any embedding of G into any metric induced by a H-minor free graph is ≥ α. Then, for H = K 2,3, we present an algorithm which either finds an α-relaxed minor, or produces an O(α)-embedding into an outerplanar metric.
This research was partly supported by the ANR grant BLANC GGAA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwala, R., Bafna, V., Farach, M., Narayanan, B., Paterson, M., Thorup, M.: On the approximability of numerical taxonomy (fitting distances by tree metrics). SIAM J. Comput. 28 (1999)
Bădoiu, M., Chuzhoy, J., Indyk, P., Sidiropoulos, A.: Low-distortion embeddings of general metrics into the line. In: STOC 2005 (2005)
Bǎdoiu, M., Demaine, E.D., Hajiaghayi, M.T., Sidiropoulos, A., Zadimoghaddam, M.: Ordinal embedding: approximation algorithms and dimensionality reduction. In: APPROX-RANDOM 2008 (2008)
Bǎdoiu, M., Indyk, P., Sidiropoulos, A.: Approximation algorithms for embedding general metrics into trees. In: SODA 2007 (2007)
Brandstädt, A., Chepoi, V., Dragan, F.: Distance approximating trees for chordal and dually chordal graphs. J. Algorithms 30 (1999)
Chepoi, V., Dragan, F.: A note on distance approximating trees in graphs. Europ. J. Combin. 21 (2000)
Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. In: SoCG 2008 (2008)
Chepoi, V., Fichet, B.: l ∞ -Approximation via subdominants. J. Math. Psychol. 44 (2000)
Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383 (2007)
Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discr. Math. 307 (2007)
Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. In: SODA 2004 (2004)
Gupta, A.: Steiner points in tree metrics don’t (really) help. In: SODA 2001 (2001)
Indyk, P., Matousek, J.: Low-distortion embeddings of finite metric spaces. In: Handbook of Discrete and Computational Geometry. CRC Press, LLC (2004)
Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: FOCS 2006 (2006)
Rabinovich, Y., Raz, R.: Lower bounds on the distortion of embedding finite metric spaces in graphs. Discr. Comput. Geom. 19 (1998)
Shavitt, Y., Tankel, T.: On internet embedding in hyperbolic spaces for overlay construction and distance estimation. In: INFOCOM 2004 (2004)
Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chepoi, V., Dragan, F.F., Newman, I., Rabinovich, Y., Vaxès, Y. (2010). Constant Approximation Algorithms for Embedding Graph Metrics into Trees and Outerplanar Graphs. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. RANDOM APPROX 2010 2010. Lecture Notes in Computer Science, vol 6302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15369-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-15369-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15368-6
Online ISBN: 978-3-642-15369-3
eBook Packages: Computer ScienceComputer Science (R0)