Abstract
Theories defined in a process model are formalized and studied. A theory in a process calculus is a set of perpetually available processes with finite interactability, each can be regarded as a service, an agent behind the scene or an axiom. The operational and observational semantics of the theories are investigated. The power of the approach is demonstrated by interpreting the asynchronous π-calculus as a theory, the asynchronous theory, in the π-calculus. A complete axiomatic system is constructed for the asynchronous theory, which gives rise to a proof system for the weak asynchronous bisimilarity of the asynchronous π.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer Science 111, 3–57 (1993)
Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous π-calculus. Theoretical Computer Science 195, 291–324 (1998)
Barendregt, H.: The lambda calculus: Its syntax and semantics. Studies in Logic and Foundations of Mathematics (1984)
Boudol, G.: Asynchrony and the π-calculus. Technical Report RR-1702, INRIA Sophia-Antipolis (1992)
Cai, X., Fu, Y.: The λ-calculus in the π-calculus (2010)
Fu, Y., Lu, H.: On the expressiveness of interaction. Theoretical Computer Science 411, 1387–1451 (2010)
Fu, Y.: Theory of interaction (2010)
Fu, Y., Yang, Z.: Tau laws for pi calculus. Theoretical Computer Science 308, 55–130 (2003)
Fu, Y., Zhu, H.: The name-passing calculus (2010)
Hyland, M., Ong, L.: Pi-calculus, dialogue games and pcf. In: Proc. 7th ACM Conference on Functional Programming Languages and Computer Architecture (FPCA 1995), pp. 96–107 (1995)
Honda, K., Tokoro, M.: An object calculus for asynchronous communications. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)
Honda, K., Tokoro, M.: On asynchronous communication semantics. In: Tokoro, M., Wegner, P., Nierstrasz, O. (eds.) ECOOP-WS 1991. LNCS, vol. 612, pp. 21–51. Springer, Heidelberg (1992)
Honda, K., Yoshida, M.: On reduction-based process semantics. Theoretical Computer Science 151, 437–486 (1995)
Lin, H.: Complete inference systems for weak bisimulation equivalences in the π-calculus. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 187–201. Springer, Heidelberg (1995)
Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)
Milner, R.: Functions as processes. Mathematical Structures in Computer Science 2, 119–146 (1992)
Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Computation 100, 1–40 (Part I), 41–77 (Part II) (1992)
Parrow, J., Sangiorgi, D.: Algebraic theories for name-passing calculi. Information and Computation 120, 174–197 (1995)
Sewell, P.: Nonaxiomatisability of equivalence over finite state processes. Annals of Pure and Applied Logic 90, 163–191 (1997)
Walker, D.: Objects in the π-calculus. Information and Computation 116, 253–271 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fu, Y. (2010). Theory by Process. In: Gastin, P., Laroussinie, F. (eds) CONCUR 2010 - Concurrency Theory. CONCUR 2010. Lecture Notes in Computer Science, vol 6269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15375-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-15375-4_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15374-7
Online ISBN: 978-3-642-15375-4
eBook Packages: Computer ScienceComputer Science (R0)