Abstract
Accurately modeling object colors, and features in general, plays a critical role in video segmentation and analysis. Commonly used color models, such as global Gaussian mixtures, localized Gaussian mixtures, and pixel-wise adaptive ones, often fail to accurately represent the object appearance in complicated scenes, thereby leading to segmentation errors. We introduce a new color model, Dynamic Color Flow, which unlike previous approaches, incorporates motion estimation into color modeling in a probabilistic framework, and adaptively changes model parameters to match the local properties of the motion. The proposed model accurately and reliably describes changes in the scene’s appearance caused by motion across frames. We show how to apply this color model to both foreground and background layers in a balanced way for efficient object segmentation in video. Experimental results show that when compared with previous approaches, our model provides more accurate foreground and background estimations, leading to more efficient video object cutout systems.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Wang, J., Cohen, M.: Image and video matting: A survey. Foundations and Trends in Computer Graphics and Vision 3, 97–175 (2007)
Wang, J., Bhat, P., Colburn, A., Agrawala, M., Cohen, M.: Interactive video cutout. In: Proc. of ACM SIGGRAPH (2005)
Li, Y., Sun, J., Shum, H.: Video object cut and paste. In: Proc. ACM SIGGRAPH, pp. 595–600 (2005)
Bai, X., Sapiro, G.: A geodesic framework for fast interactive image and video segmentation and matting. In: Proc. of IEEE ICCV (2007)
Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proc. of ICPR (2004)
Elgammal, A., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)
Bai, X., Wang, J., Simons, D., Sapiro, G.: Video snapcut: robust video object cutout using localized classifiers. ACM Trans. Graph. 28, 1–11 (2009)
Price, B., Morse, B., Cohen, S.: Livecut: Learning-based interactive video segmentation by evaluation of multiple propagated cues. In: Proc. of ICCV (2009)
Sun, J., Zhang, W., Tang, X., yeung Shum, H.: Background cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)
Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: Proc. of CVPR (2006)
Roth, S., Black, M.J.: On the spatial statistics of optical flow. IJCV 74, 33–50 (2007)
Sun, D., Roth, S., Lewis, J.P., Black, M.J.: Learning optical flow. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 83–97. Springer, Heidelberg (2008)
Black, M.J., Yacoob, Y., Jepson, A.D., Fleet, D.J.: Learning parameterized models of image motion. In: Proc. of CVPR, pp. 561–567 (1997)
Simoncelli, E., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In: Proc of CVPR, pp. 310–315 (1991)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/kanade meets horn/schunck: combining local and global optic flow methods. IJCV 61, 211–231 (2005)
Silverman, B.: Density estimation for statistic and data analysis. Monographs on Statistics and Applied Probability (1986)
Irani, M., Anandan, P., Bergen, J.: Efficient representations of video sequences and their applications. Signal Processing: Image Communication 8, 327–351 (1996)
Rav-Acha, A., Pritch, Y., Lischinski, D., Peleg, S.: Dynamosaicing: Mosaicing of dynamic scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence. 29, 1789–1801 (2007)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. of ACM SIGGRAPH, pp. 417–424 (2000)
Chuang, Y.Y., Agarwala, A., Curless, B., Salesin, D., Szeliski, R.: Video matting of complex scenes. In: Proc. of ACM SIGGRAPH, pp. 243–248 (2002)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut - interactive foreground extraction using iterated graph cut. In: Proc. of ACM SIGGRAPH, pp. 309–314 (2004)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bai, X., Wang, J., Sapiro, G. (2010). Dynamic Color Flow: A Motion-Adaptive Color Model for Object Segmentation in Video. In: Daniilidis, K., Maragos, P., Paragios, N. (eds) Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science, vol 6315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15555-0_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-15555-0_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15554-3
Online ISBN: 978-3-642-15555-0
eBook Packages: Computer ScienceComputer Science (R0)