Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Study of Rats’ Active Avoidance Behavior by the Cluster Analysis

  • Conference paper
Life System Modeling and Intelligent Computing (ICSEE 2010, LSMS 2010)

Abstract

Unsupervised cluster analysis is proposed for the study of active avoidance formation in three groups of albino rats: (a) Intact; (b) neocortex and (c) dorsal hippocampus lesioned. The term ‘behavior vector’ has been introduced to quantitatively assess the behavior of rats while learning. The proposed approach enables the assessment of active avoidance behavior in rats simultaneously by all the tested parameters and the classification of animals classify the animals into groups by their behavioral resemblance through the learning process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balslev, D., Finn, Å.N., Frutiger, S.A., Sidtis, J.J., Christiansen, T.B., Svarer, C., Strother, S.C., Rottenberg, D.A., Hansen, L.K., Paulson, O.B., Law, I.: Cluster Analysis of Activity-time Series in Motor Learning. Human Brain Mapping 15(3), 135–198 (2002)

    Article  Google Scholar 

  2. Cohen, H., Zohar, J., Matar, M.A., Kaplan, Z., Geva, A.B.: Unsupervised Fuzzy Clustering Analysis Supports Behavioral Cutoff Criteria in an Animal Model of Posttraumatic Stress Disorder. Biological Psychiatry 58(8), 640–650 (2005); doi: 10.1007/s00422-007-0209-6

    Article  Google Scholar 

  3. Hausken, K., Moxnes, J.F.: Behaviorist Stochastic Modeling of Instrumental Learning. Behavioural Processe 56, 121–129 (2001)

    Article  Google Scholar 

  4. Ito, S., Yuasa, H., Luo, Z., Ito, M., Yanagihara, D.: A Mathematical Model of Adaptive Behavior in Quadruped Locomotion. Biol. Cybern. 78, 337–347 (1998)

    Article  MATH  Google Scholar 

  5. Paulus, M.P., Geyer, M.A.: Quantitative Assessment of the Microstructure of Rat Behavior: If(d), The Extension of the Scaling Hypothesis. Psychopharmacology 113(2), 177–186 (2005)

    Article  Google Scholar 

  6. Paxinos, G., Watson, C.: The Rat Brain in Stereotaxic Coordinates, 3rd edn. Academic Press, San Diego (1997)

    Google Scholar 

  7. Rapp, P.E.: Quantitative Characterization of Animal Behavior Following Blast Exposure. Cogn. Neurodyn. 1(4), 287–293 (2007)

    Article  Google Scholar 

  8. Speakman, J.R., Bullock, D.J.: A Problem Defining Temporal Pattern in Animal Behaviour: Clustering in the Emergence Behaviour of. Animal Behaviour 43(3), 491–500 (1992)

    Article  Google Scholar 

  9. Stevens, M.C., Fein, D.A., Dunn, M., Allen, D.D., Waterhouse, L.H., Feinstein, C.M.D., Rapin, I.M.D.: Subgroups of Children With Autism by Cluster Analysis: A Longitudinal Examination. Journal of the American Academy of Child & Adolescent Psychiatry 39(3), 346–352 (2002)

    Article  Google Scholar 

  10. Tavdishvili, O.: Automatic Classification Algorithm for Observable Data  set. Proceedings of the Institute of Cybernetics, Georgian AS 3(1-2), 136–141 (2004)

    Google Scholar 

  11. Tavdishvili, O., Sulaberidze, T.: Segmentation Method of 3D Segments Extraction on the Scene Image. In: Blackledge, J.M., Turner, M.J. (eds.) Image Processing III: Mathematical Methods, Algorithms and Applications, pp. 82–88. Horwood Publishing, Chichester (2001)

    Google Scholar 

  12. Tsagareli, S.N., Djgarkava, N.N.: Assesment of Food-obtaining and Avoidance Behavior in Albino rats (in Georgian). In: Biology today. Collected works, pp. 166–177. Tbilisi State University, Tbilisi (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tavdishvili, O., Archvadze, N., Tsagareli, S., Stamateli, A., Gvajaia, M. (2010). The Study of Rats’ Active Avoidance Behavior by the Cluster Analysis. In: Li, K., Jia, L., Sun, X., Fei, M., Irwin, G.W. (eds) Life System Modeling and Intelligent Computing. ICSEE LSMS 2010 2010. Lecture Notes in Computer Science(), vol 6330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15615-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15615-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15614-4

  • Online ISBN: 978-3-642-15615-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics