Abstract
Reduced order modelling, in which a full system response is projected onto a subspace of lower dimensionality, has been used previously to accelerate finite element solution schemes by reducing the size of the involved linear systems. In the present work we take advantage of a secondary effect of such reduction for explicit analyses, namely that the stable integration time step is increased far beyond that of the full system. This phenomenon alleviates one of the principal drawbacks of explicit methods, compared with implicit schemes. We present an explicit finite element scheme in which time integration is performed in a reduced basis. The computational benefits of the procedure within a GPU-based execution framework are examined, and an assessment of the errors introduced is given. Speedups approaching an order of magnitude are feasible, without introduction of prohibitive errors, and without hardware modifications. The procedure may have applications in medical image-guidance problems in which both speed and accuracy are vital.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Carter, T.J., Sermesant, M., Cash, D.M., Barratt, D.C., Tanner, C., Hawkes, D.J.: Application of soft tissue modelling to image-guided surgery. Medical Engineering & Physics 27(10), 893–909 (2005)
Colgan, R., McClelland, J., McQuaid, D., Evans, P.M., Hawkes, D., Brock, J., Landau, D., Webb, S.: Planning lung radiotherapy using 4D CT data and a motion model. Physics in Medicine and Biology 53, 5815–5830 (2008)
Ferrant, M., Nabavi, A., Macq, B., Jolesz, F., Kikinis, R., Warfield, S.: Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Transactions on Medical Imaging 20(12), 1384–1397 (2001)
Hill, D.L.G., Maurer, C.R., Maciunas, R.J., Barwise, J.A., Fitzpatrick, J.M., Wang, M.Y.: Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 43(3), 514–526 (1998)
Joldes, G.R., Wittek, A., Miller, K.: Non-locking tetrahedral finite element for surgical simulation. Communications in Numerical Methods in Engineering 25(7), 827–836 (2009)
Krysl, P., Lall, S., Marsden, J.E.: Dimensional model reduction in non-linear finite element dynamics of solids and structures. International Journal for Numerical Methods in Engineering 51, 479–504 (2001)
Miga, M.I., Paulsen, K.D., Lemery, J.M., Eisner, S.D., Hartov, A., Kennedy, F.E., Roberts, D.W.: Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Transactions on Medical Imaging 18(10), 866–874 (1999)
Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Real-time deformable models of non-linear tissues by model reduction techniques. Computer Methods and Programs in Biomedicine 91, 223–231 (2008)
NVIDIA Corporation: NVIDIA CUDA Programming Guide Version 2.3 (2009)
Skrinjar, O., Nabavi, A., Duncan, J.: Model-driven brain shift compensation. Medical Image Analysis 6(4), 361–373 (2002)
Tanner, C., Schnabel, J.A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J.: Factors influencing the accuracy of biomechanical breast models. Medical Physics 33(6), 1758–1769 (2006)
Taylor, Z.A., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Transactions on Medical Imaging 27(5), 650–663 (2008)
Taylor, Z.A., Comas, O., Cheng, M., Passenger, J., Hawkes, D.J., Atkinson, D., Ourselin, S.: On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution. Medical Image Analysis 13(2), 234–244 (2009)
Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain deformation: Application to medical image registration. Journal of Biomechanics 40(4), 919–929 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Taylor, Z.A., Crozier, S., Ourselin, S. (2010). Real-Time Surgical Simulation Using Reduced Order Finite Element Analysis. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. MICCAI 2010. Lecture Notes in Computer Science, vol 6362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15745-5_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-15745-5_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15744-8
Online ISBN: 978-3-642-15745-5
eBook Packages: Computer ScienceComputer Science (R0)