Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Robustness of Level Sets

  • Conference paper
Algorithms – ESA 2010 (ESA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6346))

Included in the following conference series:

Abstract

We define the robustness of a level set homology class of a function \(f: {\mathbb X} \to {\mathbb R}\) as the magnitude of a perturbation necessary to kill the class. Casting this notion into a group theoretic framework, we compute the robustness for each class, using a connection to extended persistent homology. The special case \({\mathbb X} = {\mathbb R}^3\) has ramifications in medical imaging and scientific visualization.

This research is partially supported by the Defense Advanced Research Projects Agency (DARPA), under grants HR0011-05-1-0057 and HR0011-09-0065, as well as the National Science Foundation (NSF), under grant DBI-0820624.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proc. 8th IEEE Conf. Visualization, pp. 167–173 (1997)

    Google Scholar 

  2. Carlsson, G., Collins, A., Guibas, L.J., Zomorodian, Z.: Persistence barcodes for shapes. Internat. J. Shape Modeling 11, 149–187 (2005)

    Article  MATH  Google Scholar 

  3. Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In: Proc. 25th Ann. Sympos. Comput. Geom., pp. 247–256 (2009)

    Google Scholar 

  4. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9, 79–103 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edelsbrunner, H., Harer, J.: Persistent homology — a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry. Twenty Years Later. Contemporary Mathematics, vol. 453, pp. 257–282. Amer. Math. Soc., Providence (2008)

    Google Scholar 

  6. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Edelsbrunner, H., Morozov, D., Patel, A.: The stability of the apparent contour of an orientable 2-manifold. In: Pascucci, V., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications. Springer, Heidelberg (to appear)

    Google Scholar 

  8. Edelsbrunner, H., Morozov, D., Patel, A.: Quantifying transversality by measuring the robustness of intersections. Dept. Comput. Sci., Duke Univ., Durham, North Carolina (2009) (Manuscript)

    Google Scholar 

  9. Fang, S., Biddlecome, T., Tuceryan, M.: Image-based transfer function design for data exploration in volume visualization. In: Proc. 9th IEEE Conf. Visualization, pp. 319–326 (1998)

    Google Scholar 

  10. van Krefeld, M., van Oostrum, R., Bajaj, C.L., Pascucci, V., Schikore, D.R.: Contour trees and small seed sets for isosurface traversal. In: Proc. 13th Ann. Sympos. Comput. Geom., pp. 212–220 (1997)

    Google Scholar 

  11. Munkres, J.R.: Elements of Algebraic Topology. Perseus, Cambridge (1984)

    MATH  Google Scholar 

  12. Newman, T.S., Yi, H.: A survey of the marching cube algorithm. Computers and Graphics 30, 854–879 (2006)

    Article  Google Scholar 

  13. Wittenbrink, C.M., Malzbender, T., Goss, M.E.: Opacity-weighted color interpolation for volume sampling. In: Proc. IEEE Proc. Volume Visualization, pp. 135–142 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bendich, P., Edelsbrunner, H., Morozov, D., Patel, A. (2010). The Robustness of Level Sets. In: de Berg, M., Meyer, U. (eds) Algorithms – ESA 2010. ESA 2010. Lecture Notes in Computer Science, vol 6346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15775-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15775-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15774-5

  • Online ISBN: 978-3-642-15775-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics