Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Workflow Recognition Using Holistic Features and Outlier-Tolerant Fused Hidden Markov Models

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

Monitoring real world environments such as industrial scenes is a challenging task due to heavy occlusions, resemblance of different processes, frequent illumination changes, etc. We propose a robust framework for recognizing workflows in such complex environments, boasting a threefold contribution: Firstly, we employ a novel holistic scene descriptor to efficiently and robustly model complex scenes, thus bypassing the very challenging tasks of target recognition and tracking. Secondly, we handle the problem of limited visibility and occlusions by exploiting redundancies through the use of merged information from multiple cameras. Finally, we use the multivariate Student-t distribution as the observation likelihood of the employed Hidden Markov Models, in order to further enhance robustness. We evaluate the performance of the examined approaches under real-life visual behavior understanding scenarios and we compare and discuss the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zelnik-Manor, L.: Statistical analysis of dynamic actions. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1530–1535 (2006)

    Article  Google Scholar 

  2. Laptev, I., Pe’rez, P.: Retrieving actions in movies. In: Proc. Int. Conf. Comp. Vis. (ICCV 2007), Rio de Janeiro, Brazil, pp. 1–8 (October 2007)

    Google Scholar 

  3. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

    Article  Google Scholar 

  4. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104(2), 249–257 (2006)

    Article  Google Scholar 

  5. Xiang, T., Gong, S.: Beyond tracking: modelling activity and understanding behaviour. International Journal of Computer Vision 67, 21–51 (2006)

    Article  Google Scholar 

  6. Antonakaki, P., Kosmopoulos, D., Perantonis, S.: Detecting abnormal human behaviour using multiple cameras. Signal Processing 89(9), 1723–1738 (2009)

    Article  MATH  Google Scholar 

  7. Lao, W., Han, J., de With, P.H.N.: Automatic video-based human motion analyzer for consumer surveillance system. IEEE Trans. on Consumer Electronics 55(2), 591–598 (2009)

    Google Scholar 

  8. Bregler, C., Malik, J.: Learning appearance based models: Mixtures of second moment experts. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 845. The MIT Press, Cambridge (1997)

    Google Scholar 

  9. Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 852–872 (2000)

    Article  Google Scholar 

  10. Bashir, F.I., Qu, W., Khokhar, A.A., Schonfeld, D.: Hmm-based motion recognition system using segmented pca. In: ICIP, vol. 3, pp. 1288–1291 (2005)

    Google Scholar 

  11. Dupont, S., Luettin, J.: Audio-visual speech modeling for continuous speech recognition. IEEE Transactions on Multimedia 2(3), 141–151 (2000)

    Article  Google Scholar 

  12. Vogler, C., Metaxas, D.: Parallel hidden markov models for american sign language recognition, pp. 116–122 (1999)

    Google Scholar 

  13. Zeng, Z., Tu, J., Pianfetti, B., Huang, T.: Audiovisual affective expression recognition through multistream fused hmm. IEEE Trans. Mult. 10(4), 570–577 (2008)

    Article  Google Scholar 

  14. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  15. Stalder, S., Grabner, H., van Gool, L.: Exploring context to learn scene specific object detectors. In: Proc. PETS (2009)

    Google Scholar 

  16. Chatzis, S., Kosmopoulos, D., Varvarigou, T.: Robust sequential data modeling using an outlier tolerant hidden markov model. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(9), 1657–1669 (2009)

    Article  Google Scholar 

  17. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, vol. 2, pp. 246–252 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Voulodimos, A., Grabner, H., Kosmopoulos, D., Van Gool, L., Varvarigou, T. (2010). Robust Workflow Recognition Using Holistic Features and Outlier-Tolerant Fused Hidden Markov Models. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics