Abstract
Monitoring real world environments such as industrial scenes is a challenging task due to heavy occlusions, resemblance of different processes, frequent illumination changes, etc. We propose a robust framework for recognizing workflows in such complex environments, boasting a threefold contribution: Firstly, we employ a novel holistic scene descriptor to efficiently and robustly model complex scenes, thus bypassing the very challenging tasks of target recognition and tracking. Secondly, we handle the problem of limited visibility and occlusions by exploiting redundancies through the use of merged information from multiple cameras. Finally, we use the multivariate Student-t distribution as the observation likelihood of the employed Hidden Markov Models, in order to further enhance robustness. We evaluate the performance of the examined approaches under real-life visual behavior understanding scenarios and we compare and discuss the obtained results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zelnik-Manor, L.: Statistical analysis of dynamic actions. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1530–1535 (2006)
Laptev, I., Pe’rez, P.: Retrieving actions in movies. In: Proc. Int. Conf. Comp. Vis. (ICCV 2007), Rio de Janeiro, Brazil, pp. 1–8 (October 2007)
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)
Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104(2), 249–257 (2006)
Xiang, T., Gong, S.: Beyond tracking: modelling activity and understanding behaviour. International Journal of Computer Vision 67, 21–51 (2006)
Antonakaki, P., Kosmopoulos, D., Perantonis, S.: Detecting abnormal human behaviour using multiple cameras. Signal Processing 89(9), 1723–1738 (2009)
Lao, W., Han, J., de With, P.H.N.: Automatic video-based human motion analyzer for consumer surveillance system. IEEE Trans. on Consumer Electronics 55(2), 591–598 (2009)
Bregler, C., Malik, J.: Learning appearance based models: Mixtures of second moment experts. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, p. 845. The MIT Press, Cambridge (1997)
Ivanov, Y.A., Bobick, A.F.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 852–872 (2000)
Bashir, F.I., Qu, W., Khokhar, A.A., Schonfeld, D.: Hmm-based motion recognition system using segmented pca. In: ICIP, vol. 3, pp. 1288–1291 (2005)
Dupont, S., Luettin, J.: Audio-visual speech modeling for continuous speech recognition. IEEE Transactions on Multimedia 2(3), 141–151 (2000)
Vogler, C., Metaxas, D.: Parallel hidden markov models for american sign language recognition, pp. 116–122 (1999)
Zeng, Z., Tu, J., Pianfetti, B., Huang, T.: Audiovisual affective expression recognition through multistream fused hmm. IEEE Trans. Mult. 10(4), 570–577 (2008)
Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–267 (2006)
Stalder, S., Grabner, H., van Gool, L.: Exploring context to learn scene specific object detectors. In: Proc. PETS (2009)
Chatzis, S., Kosmopoulos, D., Varvarigou, T.: Robust sequential data modeling using an outlier tolerant hidden markov model. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(9), 1657–1669 (2009)
Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, vol. 2, pp. 246–252 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Voulodimos, A., Grabner, H., Kosmopoulos, D., Van Gool, L., Varvarigou, T. (2010). Robust Workflow Recognition Using Holistic Features and Outlier-Tolerant Fused Hidden Markov Models. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_71
Download citation
DOI: https://doi.org/10.1007/978-3-642-15819-3_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15818-6
Online ISBN: 978-3-642-15819-3
eBook Packages: Computer ScienceComputer Science (R0)