Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kernel-Based Learning from Infinite Dimensional 2-Way Tensors

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6353))

Included in the following conference series:

Abstract

In this paper we elaborate on a kernel extension to tensor-based data analysis. The proposed ideas find applications in supervised learning problems where input data have a natural 2 −way representation, such as images or multivariate time series. Our approach aims at relaxing linearity of standard tensor-based analysis while still exploiting the structural information embodied in the input data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizerman, M., Braverman, E.M., Rozonoer, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)

    MathSciNet  Google Scholar 

  2. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, vol. 19, p. 41 (2007)

    Google Scholar 

  3. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 337–404 (1950)

    MATH  MathSciNet  Google Scholar 

  4. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  5. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  7. He, X., Cai, D., Niyogi, P.: Tensor subspace analysis. In: Advances in Neural Information Processing Systems, vol. 18, p. 499 (2006)

    Google Scholar 

  8. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM review 51(3), 455–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Micchelli, C.A., Pontil, M.: On learning vector-valued functions. Neural Computation 17(1), 177–204 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. To appear in SIAM Review

    Google Scholar 

  11. Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition. Pattern Recognition 40(3), 993–1003 (2007)

    Article  MATH  Google Scholar 

  12. Schölkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  13. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least squares support vector machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  14. Vasilescu, M., Terzopoulos, D.: Multilinear subspace analysis of image ensembles. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (2003)

    Google Scholar 

  15. Vilenkin, N.I.A.: Special functions and the theory of group representations. American Mathematical Society, Providence (1968)

    MATH  Google Scholar 

  16. Wahba, G.: Spline models for observational data. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Signoretto, M., De Lathauwer, L., Suykens, J.A.K. (2010). Kernel-Based Learning from Infinite Dimensional 2-Way Tensors. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15822-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15822-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15821-6

  • Online ISBN: 978-3-642-15822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics