Abstract
Noninvasive cardiac electrophysiological imaging (IECG), the effort to use body surface potential measurement to estimate subject-specific electrophysiological activity of the heart, traditionally is performed on detailed heart-torso models that are completely reconstructed from a large amount of images. This geometrical modeling brings high demands of operational time and data acquisition, rendering current IECG techniques clinically impractical. In this study, we investigate the feasibility to use an alternative geometrical model that excludes local details but captures subject-specific global geometrical parameters that have been regarded essential for reliable IECG solutions. This is done by using limited images and image metadata to customize a pre-defined, generic ventricle and electrode-array representation to subject-specific ventricle size, position, orientation and electrode position on the body surface. We apply this simplified geometrical modeling in IECG studies of post myocardial infarction patients; the results of transmembrane potential imaging and infarct quantitation are compared with the gold standard and results from the same IECG approach using traditional, detailed heart-torso model. This study shows that local geometrical details do not have significant impact on IECG solutions and excluding them from geometrical modeling might be of potential to drive cardiac electrophysiological imaging closer towards clinical practicability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wang, L., Zhang, H., Wong, K., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 5(2), 296–315 (2010)
Rudy, Y., Messinger-Rapport, B.: Inverse problem of electrocardiography: solutions in terms of epicardial potentials. Criti. Rev. Biomed. Eng. 16, 215–268 (1988)
Cheng, L.: Non-invasive Electrical Imaging of the Heartl. PhD thesis, Univ. of Auckland, New Zealand (2001)
Huiskamp, G., van Oosterom, A.: Tailored versus realistic geometry in the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng. 36, 827–835 (1989)
Rapport, B.J., Rudy, Y.: The inverse problem in electrocardiography: a model study of the effects of geometry and conductivity parameters on the reconstruction of epicardial pontetials. IEEE Trans. Biomed. Eng. 33(7), 667–675 (1986)
Cheng, L.K., Bodley, J.M., Pullan, A.J.: The effect of experimental and modeling errors on the electrocardiographic inverse problem. IEEE Trans. Biomed. Eng. 50(1), 23–32 (2003)
Jiang, Y., Farina, D., Doessel, O.: Effect of heart motion on the solution of forward and inverse electrocardiographic problem - a simulation study. In: Proc. Computers in Cardiology, pp. 365–368 (2008)
Jiang, Y., Meng, Y., Farina, D., Doessel, O.: Effect of respiration on the solution of forward and inverse electrocardiographic problem - a simulation study. In: Proc. Computers in Cardiology (2009)
Nash, M.: Mechanics and Material Properties of the Heart using an Anatomically Accurate Mathematical Model. PhD thesis, Univ. of Auckland, New Zealand (May 1998)
Dawoud, F., Wagner, G., Moody, G., Horacek, B.M.: Using inverse electrocardiography to image myocardial infarction - reflection on the 2007 physionet/computers in cardiology challenge. Eur. J. Cardiovasc. Prev. Rehabil. 41(6), 630–635 (2008)
Nielsen, P.M.F., Grice, I.J.L., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Cardiol. 260, H1365–H1378 (1991)
Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiological signals. Cric. 101, e215–e220 (2000)
Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circ. 105, 539–542 (2002)
Sung, D., Omens, J.H., McCulloch, A.D.: Model-based analysis of optically mapped epicardial activation patterns and conduction velocity. Ann. Biomed. Eng. 28, 1085–1092 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, L., Wong, K.C.L., Zhang, H., Liu, H., Shi, P. (2010). How Much Geometrical Detail Do We Need in Cardiac Electrophysiological Imaging? A Generic Heart-Torso Representation for Fast Subject-Specific Customization. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-15835-3_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15834-6
Online ISBN: 978-3-642-15835-3
eBook Packages: Computer ScienceComputer Science (R0)