Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

How Much Geometrical Detail Do We Need in Cardiac Electrophysiological Imaging? A Generic Heart-Torso Representation for Fast Subject-Specific Customization

  • Conference paper
Statistical Atlases and Computational Models of the Heart (STACOM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6364))

Abstract

Noninvasive cardiac electrophysiological imaging (IECG), the effort to use body surface potential measurement to estimate subject-specific electrophysiological activity of the heart, traditionally is performed on detailed heart-torso models that are completely reconstructed from a large amount of images. This geometrical modeling brings high demands of operational time and data acquisition, rendering current IECG techniques clinically impractical. In this study, we investigate the feasibility to use an alternative geometrical model that excludes local details but captures subject-specific global geometrical parameters that have been regarded essential for reliable IECG solutions. This is done by using limited images and image metadata to customize a pre-defined, generic ventricle and electrode-array representation to subject-specific ventricle size, position, orientation and electrode position on the body surface. We apply this simplified geometrical modeling in IECG studies of post myocardial infarction patients; the results of transmembrane potential imaging and infarct quantitation are compared with the gold standard and results from the same IECG approach using traditional, detailed heart-torso model. This study shows that local geometrical details do not have significant impact on IECG solutions and excluding them from geometrical modeling might be of potential to drive cardiac electrophysiological imaging closer towards clinical practicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, L., Zhang, H., Wong, K., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Trans. Biomed. Eng. 5(2), 296–315 (2010)

    Article  Google Scholar 

  2. Rudy, Y., Messinger-Rapport, B.: Inverse problem of electrocardiography: solutions in terms of epicardial potentials. Criti. Rev. Biomed. Eng. 16, 215–268 (1988)

    Google Scholar 

  3. Cheng, L.: Non-invasive Electrical Imaging of the Heartl. PhD thesis, Univ. of Auckland, New Zealand (2001)

    Google Scholar 

  4. Huiskamp, G., van Oosterom, A.: Tailored versus realistic geometry in the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng. 36, 827–835 (1989)

    Article  Google Scholar 

  5. Rapport, B.J., Rudy, Y.: The inverse problem in electrocardiography: a model study of the effects of geometry and conductivity parameters on the reconstruction of epicardial pontetials. IEEE Trans. Biomed. Eng. 33(7), 667–675 (1986)

    Article  Google Scholar 

  6. Cheng, L.K., Bodley, J.M., Pullan, A.J.: The effect of experimental and modeling errors on the electrocardiographic inverse problem. IEEE Trans. Biomed. Eng. 50(1), 23–32 (2003)

    Article  Google Scholar 

  7. Jiang, Y., Farina, D., Doessel, O.: Effect of heart motion on the solution of forward and inverse electrocardiographic problem - a simulation study. In: Proc. Computers in Cardiology, pp. 365–368 (2008)

    Google Scholar 

  8. Jiang, Y., Meng, Y., Farina, D., Doessel, O.: Effect of respiration on the solution of forward and inverse electrocardiographic problem - a simulation study. In: Proc. Computers in Cardiology (2009)

    Google Scholar 

  9. Nash, M.: Mechanics and Material Properties of the Heart using an Anatomically Accurate Mathematical Model. PhD thesis, Univ. of Auckland, New Zealand (May 1998)

    Google Scholar 

  10. Dawoud, F., Wagner, G., Moody, G., Horacek, B.M.: Using inverse electrocardiography to image myocardial infarction - reflection on the 2007 physionet/computers in cardiology challenge. Eur. J. Cardiovasc. Prev. Rehabil. 41(6), 630–635 (2008)

    Google Scholar 

  11. Nielsen, P.M.F., Grice, I.J.L., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Cardiol. 260, H1365–H1378 (1991)

    Google Scholar 

  12. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiological signals. Cric. 101, e215–e220 (2000)

    Google Scholar 

  13. Cerqueira, M.D., Weissman, N.J., Dilsizian, V., Jacobs, A.K., Kaul, S., Laskey, W.K., Pennell, D.J., Rumberger, J.A., Ryan, T., Verani, M.S.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circ. 105, 539–542 (2002)

    Article  Google Scholar 

  14. Sung, D., Omens, J.H., McCulloch, A.D.: Model-based analysis of optically mapped epicardial activation patterns and conduction velocity. Ann. Biomed. Eng. 28, 1085–1092 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Wong, K.C.L., Zhang, H., Liu, H., Shi, P. (2010). How Much Geometrical Detail Do We Need in Cardiac Electrophysiological Imaging? A Generic Heart-Torso Representation for Fast Subject-Specific Customization. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15835-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15834-6

  • Online ISBN: 978-3-642-15835-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics