Abstract
We show that the (1+1) evolutionary algorithm using an arbitrary mutation rate p = c/n, c a constant, finds the optimum of any n-bit pseudo-Boolean linear function f in expected time Θ(n logn).
Since previous work shows that universal drift functions cannot exist for c larger than a certain constant, we define drift functions depending on p and f. This seems to be the first time in the theory of evolutionary algorithms that drift functions are used that take into account the particular problem instance.
This work was begun while both authors were visiting the “Centre de Recerca Matemática de Catalunya”. It profited greatly from this ideal environment for collaboration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness. In: Proceedings of FOGA 2009, pp. 59–66. ACM, New York (2009)
Doerr, B., Goldberg, L.A.: Drift analysis with tail bounds. In: Parallel Problem Solving from Nature–PPSN XI. LNCS. Springer, Heidelberg (to appear 2010)
Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Optimizing monotone functions can be difficult. In: Parallel Problem Solving from Nature–PPSN XI. LNCS. Springer, Heidelberg (to appear 2010)
Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of CEC 2010. IEEE, Los Alamitos (to appear 2010)
Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings of GECCO 2010. ACM, New York (to appear 2010)
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)
Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: Surveys in Combinatorics 1999, pp. 101–136. University Press (1999)
Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)
Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimization. In: Proceedings of GECCO 2006, pp. 651–658. ACM, New York (2006)
Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 13, 502–525 (1982)
Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-proportional selection for optimizing linear functions. In: Proceedings of GECCO 2008, pp. 953–960. ACM, New York (2008)
He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127, 57–85 (2001)
He, J., Yao, X.: Erratum to: Drift analysis and average time complexity of evolutionary algorithms (artificial intelligence 127, 57-85 (2001)). Artificial Intelligence 140, 245–248 (2002)
He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3, 21–35 (2004)
Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proceedings of GECCO 2009, pp. 835–842. ACM, New York (2009)
Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms and the minimum spanning tree problem. Theoretical Compututer Science 378, 32–40 (2007)
Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82–91. Springer, Heidelberg (2008)
Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean functions. In: Sarker, R., Yao, X., Mohammadian, M. (eds.) Evolutionary Optimization, pp. 349–369. Kluwer, Dordrecht (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doerr, B., Goldberg, L.A. (2010). Adaptive Drift Analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-15844-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15843-8
Online ISBN: 978-3-642-15844-5
eBook Packages: Computer ScienceComputer Science (R0)