Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Drift Analysis

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

We show that the (1+1) evolutionary algorithm using an arbitrary mutation rate p = c/n, c a constant, finds the optimum of any n-bit pseudo-Boolean linear function f in expected time Θ(n logn).

Since previous work shows that universal drift functions cannot exist for c larger than a certain constant, we define drift functions depending on p and f. This seems to be the first time in the theory of evolutionary algorithms that drift functions are used that take into account the particular problem instance.

This work was begun while both authors were visiting the “Centre de Recerca Matemática de Catalunya”. It profited greatly from this ideal environment for collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness. In: Proceedings of FOGA 2009, pp. 59–66. ACM, New York (2009)

    Chapter  Google Scholar 

  2. Doerr, B., Goldberg, L.A.: Drift analysis with tail bounds. In: Parallel Problem Solving from Nature–PPSN XI. LNCS. Springer, Heidelberg (to appear 2010)

    Google Scholar 

  3. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Optimizing monotone functions can be difficult. In: Parallel Problem Solving from Nature–PPSN XI. LNCS. Springer, Heidelberg (to appear 2010)

    Google Scholar 

  4. Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of CEC 2010. IEEE, Los Alamitos (to appear 2010)

    Google Scholar 

  5. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings of GECCO 2010. ACM, New York (to appear 2010)

    Google Scholar 

  6. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: Surveys in Combinatorics 1999, pp. 101–136. University Press (1999)

    Google Scholar 

  8. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimization. In: Proceedings of GECCO 2006, pp. 651–658. ACM, New York (2006)

    Chapter  Google Scholar 

  10. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 13, 502–525 (1982)

    Article  Google Scholar 

  11. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-proportional selection for optimizing linear functions. In: Proceedings of GECCO 2008, pp. 953–960. ACM, New York (2008)

    Chapter  Google Scholar 

  12. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127, 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, J., Yao, X.: Erratum to: Drift analysis and average time complexity of evolutionary algorithms (artificial intelligence 127, 57-85 (2001)). Artificial Intelligence 140, 245–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3, 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proceedings of GECCO 2009, pp. 835–842. ACM, New York (2009)

    Chapter  Google Scholar 

  16. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms and the minimum spanning tree problem. Theoretical Compututer Science 378, 32–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82–91. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean functions. In: Sarker, R., Yao, X., Mohammadian, M. (eds.) Evolutionary Optimization, pp. 349–369. Kluwer, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doerr, B., Goldberg, L.A. (2010). Adaptive Drift Analysis. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics