Abstract
We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing inter- and intra-subject brain variation in MR image data. The coordinates of each image in such a low-dimensional space captures information about structural shape and appearance and, when a phenotype exists, about the subject’s clinical state. A key contribution is that we propose a method for incorporating longitudinal image information in the learned manifold. In particular, we compare simultaneously embedding baseline and follow-up scans into a single manifold with the combination of separate manifold representations for inter-subject and intra-subject variation. We apply the proposed methods to 362 subjects enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and classify healthy controls, subjects with Alzheimer’s disease (AD) and subjects with mild cognitive impairment (MCI). Learning manifolds based on both the appearance and temporal change of the hippocampus, leads to correct classification rates comparable with those provided by state-of-the-art automatic segmentation estimates of hippocampal volume and atrophy. The biomarkers identified with the proposed method are data-driven and represent a potential alternative to a-priori defined biomarkers derived from manual or automated segmentations.
This project is partially funded under the 7th Framework Programme by the European Commission (http://cordis.europa.eu/ist/).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chupin, M., Hammers, A., Liu, R., et al.: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage 46(3), 749–761 (2009)
Freeborough, P.A., Fox, N.C.: The boundary shift integral: An accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE TMI 16(5), 623–629 (1997)
Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in mci patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39(4), 1731–1743 (2008)
Gerardin, E., Chetelat, G., Chupin, M., et al.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage 47(4), 1476–1486 (2009)
Chen, H.T., Chang, H.W., Liu, T.L.: Local discriminant embedding and its variants. In: CVPR, vol. II, pp. 846–853 (2005)
He, X., Yan, S., Hu, Y., et al.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005)
Zhao, D.L., Lin, Z.C., Xiao, R., Tang, X.: Linear laplacian discrimination for feature extraction. In: CVPR, pp. 1–7 (2007)
Gerber, S., Tasdizen, T., Joshi, S.C., Whitaker, R.T.: On the manifold structure of the space of brain images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 305–312. Springer, Heidelberg (2009)
Hamm, J., Davatzikos, C., Verma, R.: Efficient large deformation registration via geodesics on a learned manifold of images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 680–687. Springer, Heidelberg (2009)
Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Computation 12, 1247–1283 (2000)
Chang, W.Y., Chen, C.S., Hung, Y.P.: Analyzing facial expression by fusing manifolds. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 621–630. Springer, Heidelberg (2007)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
Rueckert, D., Sonoda, L.I., Hayes, C., et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE TMI 18(8), 712–721 (1999)
Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining 2, 121–167 (1998)
Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: LEAP: Learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)
Wolz, R., Heckemann, R.A., Aljabar, P., et al.: Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI. NeuroImage 52, 1009–1018 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wolz, R., Aljabar, P., Hajnal, J.V., Rueckert, D. (2010). Manifold Learning for Biomarker Discovery in MR Imaging. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds) Machine Learning in Medical Imaging. MLMI 2010. Lecture Notes in Computer Science, vol 6357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15948-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-15948-0_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15947-3
Online ISBN: 978-3-642-15948-0
eBook Packages: Computer ScienceComputer Science (R0)