Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Manifold Learning for Biomarker Discovery in MR Imaging

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6357))

Included in the following conference series:

Abstract

We propose a framework for the extraction of biomarkers from low-dimensional manifolds representing inter- and intra-subject brain variation in MR image data. The coordinates of each image in such a low-dimensional space captures information about structural shape and appearance and, when a phenotype exists, about the subject’s clinical state. A key contribution is that we propose a method for incorporating longitudinal image information in the learned manifold. In particular, we compare simultaneously embedding baseline and follow-up scans into a single manifold with the combination of separate manifold representations for inter-subject and intra-subject variation. We apply the proposed methods to 362 subjects enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and classify healthy controls, subjects with Alzheimer’s disease (AD) and subjects with mild cognitive impairment (MCI). Learning manifolds based on both the appearance and temporal change of the hippocampus, leads to correct classification rates comparable with those provided by state-of-the-art automatic segmentation estimates of hippocampal volume and atrophy. The biomarkers identified with the proposed method are data-driven and represent a potential alternative to a-priori defined biomarkers derived from manual or automated segmentations.

This project is partially funded under the 7th Framework Programme by the European Commission (http://cordis.europa.eu/ist/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chupin, M., Hammers, A., Liu, R., et al.: Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: Method and validation. NeuroImage 46(3), 749–761 (2009)

    Article  Google Scholar 

  2. Freeborough, P.A., Fox, N.C.: The boundary shift integral: An accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE TMI 16(5), 623–629 (1997)

    Google Scholar 

  3. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in mci patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39(4), 1731–1743 (2008)

    Article  Google Scholar 

  4. Gerardin, E., Chetelat, G., Chupin, M., et al.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage 47(4), 1476–1486 (2009)

    Article  Google Scholar 

  5. Chen, H.T., Chang, H.W., Liu, T.L.: Local discriminant embedding and its variants. In: CVPR, vol. II, pp. 846–853 (2005)

    Google Scholar 

  6. He, X., Yan, S., Hu, Y., et al.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005)

    Google Scholar 

  7. Zhao, D.L., Lin, Z.C., Xiao, R., Tang, X.: Linear laplacian discrimination for feature extraction. In: CVPR, pp. 1–7 (2007)

    Google Scholar 

  8. Gerber, S., Tasdizen, T., Joshi, S.C., Whitaker, R.T.: On the manifold structure of the space of brain images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 305–312. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Hamm, J., Davatzikos, C., Verma, R.: Efficient large deformation registration via geodesics on a learned manifold of images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 680–687. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Computation 12, 1247–1283 (2000)

    Article  Google Scholar 

  11. Chang, W.Y., Chen, C.S., Hung, Y.P.: Analyzing facial expression by fusing manifolds. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 621–630. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  13. Rueckert, D., Sonoda, L.I., Hayes, C., et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE TMI 18(8), 712–721 (1999)

    Google Scholar 

  14. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining 2, 121–167 (1998)

    Article  Google Scholar 

  15. Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: LEAP: Learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)

    Article  Google Scholar 

  16. Wolz, R., Heckemann, R.A., Aljabar, P., et al.: Measurement of hippocampal atrophy using 4D graph-cut segmentation: Application to ADNI. NeuroImage 52, 1009–1018 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolz, R., Aljabar, P., Hajnal, J.V., Rueckert, D. (2010). Manifold Learning for Biomarker Discovery in MR Imaging. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds) Machine Learning in Medical Imaging. MLMI 2010. Lecture Notes in Computer Science, vol 6357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15948-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15948-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15947-3

  • Online ISBN: 978-3-642-15948-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics