Abstract
This contribution discusses the application of a fast and sloppy solution of the Eikonal equation – namely the dynamic distance potential field – for the simulation of the flow of a group of pedestrian agents through two bottlenecks with different capacity (width) but identical walking distance toward the destination. It is found that using the method leads to a better distribution of agents on the two corridors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: [26], p. 3142
Steffen, B., Seyfried, A.: Modeling of pedestrian movement around 90 and 180 degree bends. In: Proc. of Workshop on Fire Protection and Life Safety in Buildings and Transportation Systems (2009)
Rogsch, C., Klingsch, W.: Risk analysis with evacuation software how should we interpret calculated results. In: Interschutz (2010) (in press)
Wardrop, J.: Road Paper. Some Theoretical Aspects of Road Traffic Research. Proceedings of the Institute of Civil Engineers 1, 325–362 (1952)
Dafermos, S., Sparrow, F.: The traffic assignment problem for a general network. J. Res. Natl. Bur. Stand., Sect. B 73, 91–118 (1969)
Gentile, G.: Linear User Cost Equilibrium: a new algorithm for traffic assignment. Submitted to Transportation Research B (2009)
Bruns, H.: Das Eikonal. S. Hirzel (1895)
Frank, P.: Über die Eikonalgleichung in allgemein anisotropen Medien. Annalen der Physik 389 (1927)
Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)
Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. In: PNAS, pp. 8431–8435 (1998)
Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: Siggraph, p. 1168 (2006)
Hartmann, D.: Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 12, 043032 (2010)
Kretz, T.: Pedestrian Traffic: on the Quickest Path. JSTAT P03012 (2009)
Kretz, T.: The use of dynamic distance potential fields for pedestrian flow around corners. In: ICEM, TU Delft (2009)
Kretz, T.: Applications of the Dynamic Distance Potential Field Method. In: Dai, S., et al. (eds.) TGF 2009, Shanghai. Springer, Heidelberg (2010)
Kretz, T., Schreckenberg, M.: F.A.S.T. – Floor field- and Agent-based Simulation Tool. In: Chung, E., Dumont, A. (eds.) Transport simulation: Beyond traditional approaches, pp. 125–135. EPFL press, Lausanne (2009)
Kretz, T., Schreckenberg, M.: The F.A.S.T.-Model. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 712–715. Springer, Heidelberg (2006)
Kretz, T.: Computation Speed of the F.A.S.T. Model. In: Dai, S., et al. (eds.) TGF 2009, Shanghai. Springer, Heidelberg (2010) (in press)
Kretz, T., Bönisch, C., Vortisch, P.: Comparison of Various Methods for the Calculation of the Distance Potential Field. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) PED 2008, Wuppertal, pp. 335–346. Springer, Heidelberg (2009)
Kretz, T.: Pedestrian Traffic – Simulation and Experiments. PhD thesis, Universität Duisburg-Essen (2007)
Helbing, D., Johansson, A.: Pedestrian, Crowd and Evacuation Dynamics. In: [26], p. 6476
PTV: VISSIM 5.30 User Manual, PTV Planung Transport Verkehr AG, Stumpfstraße 1, D-76131 Karlsruhe (2010), http://www.vissim.de/
Helbing, D., Johansson, A., Al-Abideen, H.: Dynamics of crowd disasters: An empirical study. Physical review E 75, 46109 (2007)
Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A (submitted)
Jeong, W., Whitaker, R.: A fast eikonal equation solver for parallel systems. In: SIAM Conference on Computational Science and Engineering (2007)
Meyers, R. (ed.): Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kretz, T. (2010). The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-15979-4_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15978-7
Online ISBN: 978-3-642-15979-4
eBook Packages: Computer ScienceComputer Science (R0)