Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities

  • Conference paper
Cellular Automata (ACRI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6350))

Included in the following conference series:

  • 1773 Accesses

Abstract

This contribution discusses the application of a fast and sloppy solution of the Eikonal equation – namely the dynamic distance potential field – for the simulation of the flow of a group of pedestrian agents through two bottlenecks with different capacity (width) but identical walking distance toward the destination. It is found that using the method leads to a better distribution of agents on the two corridors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation Dynamics: Empirical Results, Modeling and Applications. In: [26], p. 3142

    Google Scholar 

  2. Steffen, B., Seyfried, A.: Modeling of pedestrian movement around 90 and 180 degree bends. In: Proc. of Workshop on Fire Protection and Life Safety in Buildings and Transportation Systems (2009)

    Google Scholar 

  3. Rogsch, C., Klingsch, W.: Risk analysis with evacuation software how should we interpret calculated results. In: Interschutz (2010) (in press)

    Google Scholar 

  4. Wardrop, J.: Road Paper. Some Theoretical Aspects of Road Traffic Research. Proceedings of the Institute of Civil Engineers 1, 325–362 (1952)

    Article  Google Scholar 

  5. Dafermos, S., Sparrow, F.: The traffic assignment problem for a general network. J. Res. Natl. Bur. Stand., Sect. B 73, 91–118 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gentile, G.: Linear User Cost Equilibrium: a new algorithm for traffic assignment. Submitted to Transportation Research B (2009)

    Google Scholar 

  7. Bruns, H.: Das Eikonal. S. Hirzel (1895)

    Google Scholar 

  8. Frank, P.: Über die Eikonalgleichung in allgemein anisotropen Medien. Annalen der Physik 389 (1927)

    Google Scholar 

  9. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  10. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. In: PNAS, pp. 8431–8435 (1998)

    Google Scholar 

  11. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: Siggraph, p. 1168 (2006)

    Google Scholar 

  12. Hartmann, D.: Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 12, 043032 (2010)

    Article  Google Scholar 

  13. Kretz, T.: Pedestrian Traffic: on the Quickest Path. JSTAT P03012 (2009)

    Google Scholar 

  14. Kretz, T.: The use of dynamic distance potential fields for pedestrian flow around corners. In: ICEM, TU Delft (2009)

    Google Scholar 

  15. Kretz, T.: Applications of the Dynamic Distance Potential Field Method. In: Dai, S., et al. (eds.) TGF 2009, Shanghai. Springer, Heidelberg (2010)

    Google Scholar 

  16. Kretz, T., Schreckenberg, M.: F.A.S.T. – Floor field- and Agent-based Simulation Tool. In: Chung, E., Dumont, A. (eds.) Transport simulation: Beyond traditional approaches, pp. 125–135. EPFL press, Lausanne (2009)

    Chapter  Google Scholar 

  17. Kretz, T., Schreckenberg, M.: The F.A.S.T.-Model. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 712–715. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Kretz, T.: Computation Speed of the F.A.S.T. Model. In: Dai, S., et al. (eds.) TGF 2009, Shanghai. Springer, Heidelberg (2010) (in press)

    Google Scholar 

  19. Kretz, T., Bönisch, C., Vortisch, P.: Comparison of Various Methods for the Calculation of the Distance Potential Field. In: Klingsch, W., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) PED 2008, Wuppertal, pp. 335–346. Springer, Heidelberg (2009)

    Google Scholar 

  20. Kretz, T.: Pedestrian Traffic – Simulation and Experiments. PhD thesis, Universität Duisburg-Essen (2007)

    Google Scholar 

  21. Helbing, D., Johansson, A.: Pedestrian, Crowd and Evacuation Dynamics. In: [26], p. 6476

    Google Scholar 

  22. PTV: VISSIM 5.30 User Manual, PTV Planung Transport Verkehr AG, Stumpfstraße 1, D-76131 Karlsruhe (2010), http://www.vissim.de/

  23. Helbing, D., Johansson, A., Al-Abideen, H.: Dynamics of crowd disasters: An empirical study. Physical review E 75, 46109 (2007)

    Article  Google Scholar 

  24. Steffen, B., Seyfried, A.: Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A (submitted)

    Google Scholar 

  25. Jeong, W., Whitaker, R.: A fast eikonal equation solver for parallel systems. In: SIAM Conference on Computational Science and Engineering (2007)

    Google Scholar 

  26. Meyers, R. (ed.): Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kretz, T. (2010). The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics