Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the processing pipeline, as it is not obvious whether performance improvements at individual steps improve overall accuracy. The experimental results show that classification accuracy, which is comparable to trained human experts, can be achieved by using support vector machines (SVM) with appropriate kernels. Furthermore, we provide evidence that the shape of cell nuclei increases the classification performance. Most importantly, these improvements in classification accuracy result in corresponding improvements for the medically relevant estimation of immunohistochemical staining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bagon, S.: Matlab wrapper for graph cut (December 2006), http://www.wisdom.weizmann.ac.il/~bagon

  2. Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS Computational Biology 4(10), e1000173 (2008)

    Article  Google Scholar 

  3. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007: Proceedings of the 6th ACM international conference on Image and video retrieval, pp. 401–408. ACM, New York (2007)

    Google Scholar 

  4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  5. Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE transactions on Pattern Analysis and Machine Intelligence 20(12), 1222–1239 (2001)

    Article  Google Scholar 

  6. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  Google Scholar 

  7. Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1–8. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab (2003), 993475

    Google Scholar 

  9. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)

    Article  Google Scholar 

  10. Kononen, J., Bubendorf, L., et al.: Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4(7), 844–847 (1998)

    Article  Google Scholar 

  11. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schüffler, P.J., Fuchs, T.J., Ong, C.S., Roth, V., Buhmann, J.M. (2010). Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics