Abstract
We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the processing pipeline, as it is not obvious whether performance improvements at individual steps improve overall accuracy. The experimental results show that classification accuracy, which is comparable to trained human experts, can be achieved by using support vector machines (SVM) with appropriate kernels. Furthermore, we provide evidence that the shape of cell nuclei increases the classification performance. Most importantly, these improvements in classification accuracy result in corresponding improvements for the medically relevant estimation of immunohistochemical staining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bagon, S.: Matlab wrapper for graph cut (December 2006), http://www.wisdom.weizmann.ac.il/~bagon
Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B., Rätsch, G.: Support vector machines and kernels for computational biology. PLoS Computational Biology 4(10), e1000173 (2008)
Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007: Proceedings of the 6th ACM international conference on Image and video retrieval, pp. 401–408. ACM, New York (2007)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)
Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE transactions on Pattern Analysis and Machine Intelligence 20(12), 1222–1239 (2001)
Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)
Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1–8. Springer, Heidelberg (2008)
Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab (2003), 993475
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)
Kononen, J., Bubendorf, L., et al.: Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4(7), 844–847 (1998)
Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schüffler, P.J., Fuchs, T.J., Ong, C.S., Roth, V., Buhmann, J.M. (2010). Computational TMA Analysis and Cell Nucleus Classification of Renal Cell Carcinoma. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-15986-2_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15985-5
Online ISBN: 978-3-642-15986-2
eBook Packages: Computer ScienceComputer Science (R0)