Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Stochastic Evaluation of the Contour Strength

  • Conference paper
Pattern Recognition (DAGM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6376))

Included in the following conference series:

Abstract

If one considers only local neighborhoods for segmenting an image, one gets contours whose strength is often poorly estimated. A method for reevaluating the contour strength by taking into account non local features is presented: one generates a fixed number of random germs which serve as markers for the watershed segmentation. For each new population of markers, another set of contours is generated. ”Important” contours are selected more often. The present paper shows that the probability that a contour is selected can be estimated without performing the effective simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guigues, L.: Modèles multi-echelles pour la segmentation d’images (in french). These de Doctorat de L’Université de Cergy Pontoise (2003)

    Google Scholar 

  2. Guigues, L., Cocquerez, J., Men, H.: Scale-sets image analysis. International Journal of Computer Vision 68(3), 289–317 (2006)

    Article  Google Scholar 

  3. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)

    Article  Google Scholar 

  4. Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Int. Symp. Mathematical Morphology, ISMM 2007, pp. 265–276 (2007)

    Google Scholar 

  5. Meyer, F.: Minimal spanning forests for morphological segmentation. In: ISMM 1994, Mathematical Morphology and its applications to Signal Processing, pp. 77–84 (1994)

    Google Scholar 

  6. Fowlkes, C., Martin, D., Malik, J.: The berkeley segmentation dataset and benchmark (bsdb), http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

  7. Noyel, G., Angulo, J., Jeulin, D.: Classification-driven stochastic watershed. Application to multispectral segmentation. In: Proc. of the Fourth European Conference on Color on Graphics, Imaging and Vision (CGIV 2008), pp. 471–476 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, F., Stawiaski, J. (2010). A Stochastic Evaluation of the Contour Strength. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15986-2_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15985-5

  • Online ISBN: 978-3-642-15986-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics