Abstract
If one considers only local neighborhoods for segmenting an image, one gets contours whose strength is often poorly estimated. A method for reevaluating the contour strength by taking into account non local features is presented: one generates a fixed number of random germs which serve as markers for the watershed segmentation. For each new population of markers, another set of contours is generated. ”Important” contours are selected more often. The present paper shows that the probability that a contour is selected can be estimated without performing the effective simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Guigues, L.: Modèles multi-echelles pour la segmentation d’images (in french). These de Doctorat de L’Université de Cergy Pontoise (2003)
Guigues, L., Cocquerez, J., Men, H.: Scale-sets image analysis. International Journal of Computer Vision 68(3), 289–317 (2006)
Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)
Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Int. Symp. Mathematical Morphology, ISMM 2007, pp. 265–276 (2007)
Meyer, F.: Minimal spanning forests for morphological segmentation. In: ISMM 1994, Mathematical Morphology and its applications to Signal Processing, pp. 77–84 (1994)
Fowlkes, C., Martin, D., Malik, J.: The berkeley segmentation dataset and benchmark (bsdb), http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
Noyel, G., Angulo, J., Jeulin, D.: Classification-driven stochastic watershed. Application to multispectral segmentation. In: Proc. of the Fourth European Conference on Color on Graphics, Imaging and Vision (CGIV 2008), pp. 471–476 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meyer, F., Stawiaski, J. (2010). A Stochastic Evaluation of the Contour Strength. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds) Pattern Recognition. DAGM 2010. Lecture Notes in Computer Science, vol 6376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15986-2_52
Download citation
DOI: https://doi.org/10.1007/978-3-642-15986-2_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15985-5
Online ISBN: 978-3-642-15986-2
eBook Packages: Computer ScienceComputer Science (R0)