Abstract
We consider the problem of estimating parameters and unobserved trajectories in nonlinear ordinary differential equations (ODEs) from noisy and partially observed data. We focus on a class of state-space models defined from the integration of the differential equation in the evolution equation. Within a Bayesian framework, we derive a non-sequential estimation procedure that infers the parameters and the initial condition of the ODE, taking into account that both are required to fully characterize the solution of the ODE. This point of view, new in the context of state-space models, modifies the learning problem. To evaluate the relevance of this approach, we use an Adaptive Importance Sampling in a population Monte Carlo scheme to approximate the posterior probability distribution. We compare this approach to recursive estimation via Unscented Kalman Filtering on two reverse-modeling problems in systems biology. On both problems, our method improves on classical smoothing methods used in state space models for the estimation of unobserved trajectories.
Chapter PDF
Similar content being viewed by others
Keywords
- Importance Sampling
- Hide State
- Unscented Kalman Filter
- Proposal Distribution
- Posterior Probability Distribution
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Rodriguez-Fernandez, M., Egea, J.A., Banga, J.R.: Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics 7(483) (2006)
Calderhead, B., Girolami, M., Lawrence, N.D.: Accelerating bayesian inference over nonlinear differential equations with gaussian processes. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 217–224. MIT Press, Cambridge (2009)
Cappé, O., Douc, R., Guillin, A., Marin, J.M., Robert, C.P.: Adaptive importance sampling in general mixture classes. Statistics and Computing 18(4), 447–459 (2008)
Cappé, O., Guillin, A., Marin, J.M., Robert, C.P.: Population monte carlo. Journal of Computational and Graphical Statistics 13(4), 907–929 (2004)
Cappé, O., Moulines, E., Rydén, T.: Inference in Hidden Markov Models. Springer, Heidelberg (2005)
d’Alché-Buc, F., Brunel, N.J.-B.: Learning and inference in computational systems biology. In: Estimation of Parametric Nonlinear ODEs for Biological Networks Identification. MIT Press, Cambridge (2010)
Douc, R., Guillin, A., Marin, J.M., Robert, C.: Convergence of adaptive mixtures of importance sampling schemes. Annals of Statistics 35(1), 420–448 (2007)
Elowitz, M., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)
Gentle, J.E., Hardle, W., Mori, Y.: Handbook of computational statistics: concepts and methods. Springer, Heidelberg (2004)
Ionides, E., Breto, C., King, A.: Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences 103, 18438–18443 (2006)
de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 67–103 (2002)
Li, Z., Osborne, M.R., Prvan, T.: Parameter estimation of ordinary differential equations. IMA Journal of Numerical Analysis 25, 264–285 (2005)
Liu, J., West, M.: Combined parameter and state estimation in simulation-based filtering. In: Doucet, A., de Freitas, N., Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, pp. 197–217. Springer, Heidelberg (2001)
Mendes, P.: Learning and inference in computational systems biology. In: Comparative Assessment of Parameter Estimation and Inference Methods. MIT Press, Cambridge (2010)
Lawrence, N., Girolami, M., Rattray, M., Sanguinetti, G.: Learning and Inference in Computational Systems Biology. MIT Press, Cambridge (2010)
Quach, M., Brunel, N., d’Alché-Buc, F.: Estimating parameters and hidden variables in non-linear state-space models based on odes for biological networks inference. Bioinformatics 23(23), 3209–3216 (2007)
Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: A generalized smoothing approach. Journal of the Royal Statistical Society, Series B 69, 741–796 (2007)
Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, Heidelberg (2004)
Rodriguez-Fernandez, M., Egea, J.A., Banga, J.R.: Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems. BMC Bioinformatics 7(483) (2006)
Sitz, A., Schwarz, U., Kurths, J., Voss, H.: Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Physical review E 66, 16210 (2002)
Sun, X., Jin, L., Xiong, M.: Extended kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PLoS ONE 3(11), e3758+ (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brunel, N.J.B., d’Alché-Buc, F. (2010). Flow-Based Bayesian Estimation of Nonlinear Differential Equations for Modeling Biological Networks. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds) Pattern Recognition in Bioinformatics. PRIB 2010. Lecture Notes in Computer Science(), vol 6282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16001-1_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-16001-1_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16000-4
Online ISBN: 978-3-642-16001-1
eBook Packages: Computer ScienceComputer Science (R0)