Abstract
In this chapter a relational framework able to model and analyse the data observed by nodes involved in a sensor network is presented. In particular, we propose a powerful and expressive description language able to represent the spatio-temporal relations appearing in sensor network data along with the environmental information. Furthermore, a general purpose system able to elicit hidden frequent temporal correlations between sensor nodes is presented. The framework has been extended in order to take into account interval-based temporal data by introducing some operators based on a temporal interval logic. A preliminary abstraction step with the aim of segmenting and labelling the real-valued time series into similar subsequences is performed exploiting a kernel density estimation approach. The prposed framework has been evaluated on real world data collected from a wireless sensor network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
International Workshop on Knowledge Discovery from Sensor Data (Sensor-KDD) (2007-2008-2009)
Agrawal, R., Manilla, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery of association rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)
Akyildiz, I., Su, W., Sankarasubramanian, Y., Cayirci, E.: A survey on sensor networks. IEEE Communication Magazine 40(8), 102–114 (2002)
Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38, 393–422 (2002)
Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)
Basile, T.M.A., Mauro, N.D., Ferilli, S., Esposito, F.: Relational temporal data mining for wireless sensor networks. In: Serra, R. (ed.) AI*IA 2009. LNCS, vol. 5883, pp. 416–425. Springer, Heidelberg (2009)
Biba, M., Esposito, F., Ferilli, S., Di Mauro, N., Basile, T.: Unsupervised discretization using kernel density estimation. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 696–701 (2007)
Malerba, D., Lisi, F.: An ILP method for spatial association rule mining. In: Working notes of the First Workshop on Multi-Relational Data Mining, pp. 18–29 (2001)
Esposito, F., Di Mauro, N., Basile, T., Ferilli, S.: Multi-dimensional relational sequence mining. Fundamenta Informaticae 89(1), 23–43 (2008)
Ester, M., Kriegel, H.P., Sander, J.: Algorithms and applications for spatial data mining, vol. 1(Part 4), ch. 7, pp. 160–187. Taylor and Francis Group, Abington (2001)
Estrin, D., Culler, D., Pister, K., Sukhatme, G.: Connecting the physical world with pervasive networks. IEEE Pervasive Computing 1(1), 59–69 (2002)
Ferilli, S., Basile, T., Biba, M., Di Mauro, N., Esposito, F.: A general similarity framework for horn clause logic. Fundamenta Informaticae 90(1-2), 43–66 (2009)
Ganguly, A.R., Gama, J., Omitaomu, O.A., Gaber, M.M., Vatsavai, R.R.: Knowledge Discovery from Sensor Data. CRC Press, Inc., Boca Raton (2008)
Hoppner, F.: Learning dependencies in multivariate time series. In: Proc. of the ECAI Workshop on Knowledge Discovery in (Spatio-)Temporal Data, pp. 25–31 (2002)
Intel Berkeley Research Lab, http://db.csail.mit.edu/labdata/labdata.html
Jacobs, N., Blockeel, H.: From shell logs to shell scripts. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 80–90. Springer, Heidelberg (2001)
Kam, P., Fu, A.W.: Discovering temporal patterns for interval-based events. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp. 317–326. Springer, Heidelberg (2000)
Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)
Lattner, A., Herzog, O.: Unsupervised learning of sequential patterns. In: ICDM Workshop on Temporal Data Mining: Algorithms, Theory and Applications (2004)
Lattner, A., Herzog, O.: Mining temporal patterns from relational data. In: Lernen Wissensentdeckung Adaptivität (LWA), GI Workshops, pp. 184–189 (2005)
Laxman, S., Unnikrishnan, K., Sastry, P.: Generalized frequent episodes in event sequences. In: 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Workshop on Temporal Data Mining (2002)
Li, Q., Racine, J.: Nonparametric Econometrics: Theory and Practice. Princeton University Press, Princeton (2007)
Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks for habitat monitoring. In: Proceedings of the 1st International Workshop on Wireless sensor networks and applications, pp. 88–97. ACM, New York (2002)
McDermott, D., Hove, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., Wilkins, D.: PDDL - The Planning Domain Definition Language. Yale Center for Computational Vision and Control (1998)
Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Discovering frequent arrangements of temporal intervals. In: IEEE ICDM, pp. 354–361 (2005)
Park, B.H., Kargupta, H.: Distributed Data Mining: Algorithms, Systems, and Applications, pp. 341–358 (2002)
Roddick, J.F., Spiliopoulou, M.: A survey of temporal knowledge discovery paradigms and methods. IEEE Transactions on Knowledge and Data Engineering 14(4), 750–767 (2002)
Ullman, J.: Principles of Database and Knowledge-Base Systems, vol. I. Computer Science Press, Rockville (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Esposito, F., Basile, T.M.A., Di Mauro, N., Ferilli, S. (2010). A Relational Approach to Sensor Network Data Mining. In: Soro, A., Vargiu, E., Armano, G., Paddeu, G. (eds) Information Retrieval and Mining in Distributed Environments. Studies in Computational Intelligence, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16089-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-16089-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16088-2
Online ISBN: 978-3-642-16089-9
eBook Packages: EngineeringEngineering (R0)