Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Discovery of Super-Mediators of Information Diffusion in Social Networks

  • Conference paper
Discovery Science (DS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6332))

Included in the following conference series:

Abstract

We address the problem of discovering a different kind of influential nodes, which we call ”super-mediator”, i.e. those nodes which play an important role to pass the information to other nodes, and propose a method for discovering super-mediators from information diffusion samples without using a network structure. We divide the diffusion sequences in two groups (lower and upper), each assuming some probability distribution, find the best split by maximizing the likelihood, and rank the nodes in the upper sequences by the F-measure. We apply this measure to the information diffusion samples generated by two real networks, identify and rank the super-mediator nodes. We show that the high ranked super-mediators are also the high ranked influential nodes when the diffusion probability is large, i.e. the influential nodes also play a role of super-mediator for the other source nodes, and interestingly enough that when the high ranked super-mediators are different from the top ranked influential nodes, which is the case when the diffusion probability is small, those super-mediators become the high ranked influential nodes when the diffusion probability becomes larger. This finding will be useful to predict the influential nodes for the unexperienced spread of new information, e.g. spread of new acute contagion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)

    Article  Google Scholar 

  2. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Physical Review E 66, 35101 (2002)

    Article  Google Scholar 

  3. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Watts, D.J.: A simple model of global cascades on random networks. Proceedings of National Academy of Science, USA 99, 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Watts, D.J., Dodds, P.S.: Influence, networks, and public opinion formation. Journal of Consumer Research 34, 441–458 (2007)

    Article  Google Scholar 

  6. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. SIGKDD Explorations 6, 43–52 (2004)

    Article  Google Scholar 

  7. Domingos, P.: Mining social networks for viral marketing. IEEE Intelligent Systems 20, 80–82 (2005)

    Article  Google Scholar 

  8. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)

    Google Scholar 

  9. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: Proceedings of the 7th ACM Conference on Electronic Commerce (EC 2006), pp. 228–237 (2006)

    Google Scholar 

  10. Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1371–1376 (2007)

    Google Scholar 

  11. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social network for information diffusion. In: Data Mining and Knowledge Discovery, vol. 20, pp. 70–97. Springer, Heidelberg (2010)

    Google Scholar 

  12. Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking links in a network. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 1175–1180 (2008)

    Google Scholar 

  13. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3(2), Article 9, 9 :1–9 : 23 (2009)

    Article  Google Scholar 

  14. Kimura, M., Saito, K., Motoda, H.: Efficient estimation of influence functions fot SIS model on social networks. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009 (2009)

    Google Scholar 

  15. Saito, K., Kimura, M., Motoda, H.: Discovering influential nodes for sis models in social networks. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI), vol. 5808, pp. 302–316. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Finding influential nodes in a social network from information diffusion data. In: Proceedings of the International Workshop on Social Computing and Behavioral Modeling (SBP 2009), pp. 138–145 (2009)

    Google Scholar 

  17. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS, vol. 5828, pp. 322–337. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Behavioral analyses of information diffusion models by observed data of social network. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) Advances in Social Computing. LNCS, vol. 6007, pp. 149–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Goyal, A., Bonchi, F., Lakshhmanan, L.V.S.: Learning influence probabilities in social networks. In: Proceedings of the third ACM international conference on Web Search and Data Mining, pp. 241–250 (2010)

    Google Scholar 

  20. Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the diffusion of user-created content. In: Proceedings of the tenth ACM conference on Electronic Commerce, pp. 325–334 (2009)

    Google Scholar 

  21. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2007), pp. 420–429 (2007)

    Google Scholar 

  22. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 199–208 (2009)

    Google Scholar 

  23. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1, 226–251 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saito, K., Kimura, M., Ohara, K., Motoda, H. (2010). Discovery of Super-Mediators of Information Diffusion in Social Networks. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds) Discovery Science. DS 2010. Lecture Notes in Computer Science(), vol 6332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16184-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16184-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16183-4

  • Online ISBN: 978-3-642-16184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics