Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite p-groups Which Have Many Normal Subgroups

  • Conference paper
Information Computing and Applications (ICICA 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 105))

Included in the following conference series:

  • 1565 Accesses

Abstract

Normal subgroups of a group play an important role in determining the structure of a group. A Dedekindian group is the group all of whose subgoups are normal. The classification of such finite groups has been completed in 1897 by Dedekind. And Passman gave a classification of finite p-groups all of whose nonnormal subgroups are of order p. Above such two finite groups have many normal subgroups. Alone this line, to study the finite p-groups all of whose nonnormal subgroups are of order p or p 2, that is, its subgroups of order ≥ p 3 are normal. According to the order of the derived subgroups, divide into two cases expression and give all non-isomophic groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dedekind, R.: Uber Gruppen, deren samtliche Teiler Normalteiler sind. Annals of Mathematic 48, 548–561 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups. No.6. Part IV, The special odd case. Mathematical Surveys and Monngraphs, vol. 40.6. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  3. Passman, D.S.: Nonnormal subgroups of p-groups. Journal of Algebra 15(3), 352–370 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, Q.-h., Guo, X.-q., Qu, H.-p., Xu, M.-y.: Finite groups which have many normal subgroups. Journal of Korean Mathematical Society 46(6), 1165–1178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Božikor, Z., Janko, Z.: A complete classification of finite p-groups all of whose noncyclic subgroups are normal. Glasnik Matematic 44(1), 177–185 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, J.-q., Li, X.-h.: Finite p-groups all of whose proper subgroups have small derived subgroups. Science China Mathematics 53(5), 1357–1362 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  8. Xu, M.-y.: An Introduction to Finite Groups. Science Press, Beijing (2001) (Chinese)

    Google Scholar 

  9. Berkovich, Y.: Groups of prime power order I. Walter de Gruyter, Berlin (2008)

    MATH  Google Scholar 

  10. Berkovich, Y.: On subgroups of finite p-groups. Journal of Algebra 224(2), 198–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rédei, L.: Das schiefe Product in der Gruppentheorie. Comment Mathematical Helve 20, 225–267 (1947)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, X., Liu, Q., Zheng, S., Feng, L. (2010). Finite p-groups Which Have Many Normal Subgroups. In: Zhu, R., Zhang, Y., Liu, B., Liu, C. (eds) Information Computing and Applications. ICICA 2010. Communications in Computer and Information Science, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16336-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16336-4_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16335-7

  • Online ISBN: 978-3-642-16336-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics