Abstract
This paper describes the development of a new hybrid meta-heuristic of optimization based on a viral lifecycle, specifically the retroviruses (the nature’s swiftest evolvers’), called Retroviral Iterative Genetic Algorithm (RIGA). This algorithm uses Genetics Algorithms (GA) structures with features of retroviral replication, providing a great genetic diversity, confirmed by better results achieved by RIGA comparing with GA applied to some Real-Valued Benchmarking Functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carter, J., Saunders, V.: Virology Principles and Applications. John Wiley & Sons Ltd., England (2007)
Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley & Sons Ltd., England (1998)
Hogg, S.: Essential Microbiology. John Wiley & Sons Ltd., Chichester (2005)
Agut, A., Um Sistema Estratégico De Reprodução.: Scientific American Brasil. Edição Especial 28, 14–19 (2009)
Linden, R.: Algoritmos Genéticos, 1st edn. Brasport, Rio De Janeiro (2006)
Guedes, A., Leite, J., Aloise, D.: Um Algoritmo Genético Com Infecção Viral Para O Problema Do Caixeiro Viajante (2005)
Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem Definitions And Evaluation Criteria For The Cec 2005 Special Session On Real-Parameter Optimization. Technical Report, Nanyang Technological University, Singapore and Kangal Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, Iit Kanpur) (2005)
Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1999)
Villarreal, L., Virus São Seres Vivos.: Scientific American Brasil. Edição Especial 28, 21–24 (2009)
Kubota, N., Fukuda, T., Shimojima, K.: Virus-evolutionary genetic algorithm for a self-organizing manufacturing system. Computers & Industrial Engineering 30, 1015–1026 (1996), doi:10.1016/0360-8352(96)00049-6
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moreira, R.S., Monteiro, G.D., Teixeira, O.N., Soares, Á.S., de Oliveira, R.C.L. (2010). Retroviral Iterative Genetic Algorithm for Real Parameter Function Optimization Problems. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds) Advances in Computation and Intelligence. ISICA 2010. Lecture Notes in Computer Science, vol 6382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16493-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-16493-4_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16492-7
Online ISBN: 978-3-642-16493-4
eBook Packages: Computer ScienceComputer Science (R0)