Abstract
The objective of this paper is to provide a framework and computational model for automatic query expansion using psuedo relevance feedback. We expect that our model can be helpful in dealing with many important aspects in automatic query expansion in an efficient way. We have performed experiments based on our model using TREC data set. Results are encouraging as they indicate improvement in retrieval efficiency after applying query expansion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lee, C.J., Lin, Y.C., Chen, R.C., Cheng, P.J.: Selecting effective terms for query formulation. In: Proc. of the Fifth Asia Information Retrieval Symposium (2009)
Croft, W.B., Harper, D.J.: Using probabilistic models of document retrieval without relevance information. Journal of Documentation 35, 285–295 (1979)
Carmel, D., Yom-Tov, E., Soboroff, I.: SIGIR Workshop Report: Predicting query difficulty – methods and applications. In: Proc. of the ACM SIGIR 2005 Workshop on Predicting Query Difficulty – Methods and Applications, pp. 25–28 (2005)
Voorhees, E.M.: Query expansion using lexical semantic relations. In: Proceedings of the 1994 ACM SIGIR Conference on Research and Development in Information Retrieval (1994)
Efthimiadis, E.N.: Query expansion. Annual Review of Information Systems and Technology 31, 121–187 (1996)
Cao, G., Nie, J.Y., Gao, J.F., Robertson, S.: Selecting good expansion terms for pseudorelevance feedback. In: Proc. of 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 243–250 (2008)
Imran, H., Sharan, A.: Thesaurus and Query Expansion. International journal of computer science & information Technology (IJCSIT) 1(2), 89–97 (2009)
Lesk, M.E.: Word-word associations in document retrieval systems. American Documentation 20, 27–38 (1969)
Stairmand, M.A.: Textual context analysis for information retrieval. In: Proceedings of the 1997 ACM SIGIR Conference on Research and Development in Information Retrieval (1997)
Maron, M.E., Kuhns, J.K.: On relevance, probabilistic indexing and information retrieval. Journal of rhe ACM 7, 216–244 (1960)
Minker, J., Wilson, G.A., Zimmerman, B.H.: Query expansion by the addition of clustered terms for a document retrieval system. Information Storage and Retrieval 8, 329–348 (1972)
Ruch, P., Tbahriti, I., Gobeill, J., Aronson, A.R.: Argumentative feedback: A linguistically-motivated term expansion for information retrieval. In: Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pp. 675–682 (2006)
Mandala, R., Tokunaga, T., Tanaka, H.: Combining multiple evidence from different types of thesaurus for query expansion. In: Proceedings of the 1999 ACM SIGIR Conference on Research and Development in Information Retrieval (1999)
Sparck Jones, K.: Automatic keyword classification for information retrieval. Butterworth, London (1971)
Vechtomova, O., Wang, Y.: A study of the effect of term proximity on query expansion. Journal of Information Science 32(4), 324–333 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Imran, H., Sharan, A. (2010). A Framework for Automatic Query Expansion. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds) Web Information Systems and Mining. WISM 2010. Lecture Notes in Computer Science, vol 6318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16515-3_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-16515-3_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16514-6
Online ISBN: 978-3-642-16515-3
eBook Packages: Computer ScienceComputer Science (R0)