Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Framework for Automatic Query Expansion

  • Conference paper
Web Information Systems and Mining (WISM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6318))

Included in the following conference series:

Abstract

The objective of this paper is to provide a framework and computational model for automatic query expansion using psuedo relevance feedback. We expect that our model can be helpful in dealing with many important aspects in automatic query expansion in an efficient way. We have performed experiments based on our model using TREC data set. Results are encouraging as they indicate improvement in retrieval efficiency after applying query expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, C.J., Lin, Y.C., Chen, R.C., Cheng, P.J.: Selecting effective terms for query formulation. In: Proc. of the Fifth Asia Information Retrieval Symposium (2009)

    Google Scholar 

  2. Croft, W.B., Harper, D.J.: Using probabilistic models of document retrieval without relevance information. Journal of Documentation 35, 285–295 (1979)

    Article  Google Scholar 

  3. Carmel, D., Yom-Tov, E., Soboroff, I.: SIGIR Workshop Report: Predicting query difficulty – methods and applications. In: Proc. of the ACM SIGIR 2005 Workshop on Predicting Query Difficulty – Methods and Applications, pp. 25–28 (2005)

    Google Scholar 

  4. Voorhees, E.M.: Query expansion using lexical semantic relations. In: Proceedings of the 1994 ACM SIGIR Conference on Research and Development in Information Retrieval (1994)

    Google Scholar 

  5. Efthimiadis, E.N.: Query expansion. Annual Review of Information Systems and Technology 31, 121–187 (1996)

    Google Scholar 

  6. Cao, G., Nie, J.Y., Gao, J.F., Robertson, S.: Selecting good expansion terms for pseudorelevance feedback. In: Proc. of 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 243–250 (2008)

    Google Scholar 

  7. Imran, H., Sharan, A.: Thesaurus and Query Expansion. International journal of computer science & information Technology (IJCSIT) 1(2), 89–97 (2009)

    Google Scholar 

  8. Lesk, M.E.: Word-word associations in document retrieval systems. American Documentation 20, 27–38 (1969)

    Article  Google Scholar 

  9. Stairmand, M.A.: Textual context analysis for information retrieval. In: Proceedings of the 1997 ACM SIGIR Conference on Research and Development in Information Retrieval (1997)

    Google Scholar 

  10. Maron, M.E., Kuhns, J.K.: On relevance, probabilistic indexing and information retrieval. Journal of rhe ACM 7, 216–244 (1960)

    Article  Google Scholar 

  11. Minker, J., Wilson, G.A., Zimmerman, B.H.: Query expansion by the addition of clustered terms for a document retrieval system. Information Storage and Retrieval 8, 329–348 (1972)

    Article  Google Scholar 

  12. Ruch, P., Tbahriti, I., Gobeill, J., Aronson, A.R.: Argumentative feedback: A linguistically-motivated term expansion for information retrieval. In: Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pp. 675–682 (2006)

    Google Scholar 

  13. Mandala, R., Tokunaga, T., Tanaka, H.: Combining multiple evidence from different types of thesaurus for query expansion. In: Proceedings of the 1999 ACM SIGIR Conference on Research and Development in Information Retrieval (1999)

    Google Scholar 

  14. Sparck Jones, K.: Automatic keyword classification for information retrieval. Butterworth, London (1971)

    Google Scholar 

  15. Vechtomova, O., Wang, Y.: A study of the effect of term proximity on query expansion. Journal of Information Science 32(4), 324–333 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Imran, H., Sharan, A. (2010). A Framework for Automatic Query Expansion. In: Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds) Web Information Systems and Mining. WISM 2010. Lecture Notes in Computer Science, vol 6318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16515-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16515-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16514-6

  • Online ISBN: 978-3-642-16515-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics